JOINT INDUSTRY UNDERWATER WELDING DEVELOPMENT PROGRAM

DECEMBER 1995

FINAL REPORT

PHASE I - VOLUME 1

JOINT INDUSTRY UNDERWATER WELDING DEVELOPMENT PROGRAM PHASE I - FINAL REPORT December, 1995

TABLE OF CONTENTS

SECTION		
		PAGE
1	EXECUTIVE SUMMARY	1-1
2	BACKGROUND	
	EXPERIMENTAL PROCESSAS AND THE	2-1
	EXPERIMENTAL PROGRAM AND TEST MATRIX Base Metal Selection	2-2
	Multiple Temper Bead Wet Welding	2-2
	Power Source and Auxiliary Equipment	2-4
	Flux Formulation and Electrode Extrusion	2-4
	vveiding Parameters and Joint Design	2-4 2-5
	Light Metallography	2-5 2-5
	Crack Susceptibility of ASTM	2-5 2-5
	A537 Class 1 Base Metal	
3	MULTIPLE TEMPER BEAD WET WELDING	
	(PHASE I PART 1)	
	TIME BETWEEN PRIMARY AND TEMPER BEADS	
	Weld Deposition Scheme	3-1 3-2
	Results	3-2 3-18
	Supplemental Information	3-16 3-18
	DISTANCE BETWEEN PRIMARY AND	0-10
	TEMPER BEADS	2.40
	Microscopic Examination	3-19 3-20
	Vickers Hardness Measurements	3-20 3-20
	Charpy V-Notch Test Results	3-26
	TEMPER BEAD HEAT INPUT	
	Background	3-29 3-30
	Objective	3-30 3-30
	Justification	3-30 3-30
	Test Program	3-30
	Results/Discussion	3-37

9	SECTION	
		PAGE
	EFFECTIVENESS OF MULTIPLE TEMPER	
•	BEAD WELDING	3-39
	Tensile Test Results	3-40
	Charpy V-notch Impact Results	3-40
	Vickers 10kg Hardness	3-55
	Side Bend Test Results	3-55
	Microscopic Examinations	3-55
	Welds with and Without Tempering	3-56
	SUPPLEMENTAL CHARPY IMPACT INFORMATION	
		3-63
	Energy Absorption Temperature	
	Transition Curve - Wet Weld Metal	3-63
	Energy Absorption - Heat Affected Zone of	
	Wet Weldments	3-66
	Multiple Temper Bead Conclusions and Discussion	
		3-75
4	WELDING POWER SOURCES AND AUXILIARY	
	EQUIPMENT (PHASE I PART 2)	4-1
	Equipment Tested	4-1 4-2
	Results/Discussion	4-2 4-3
	Supplemental Information	4-3 4-3
5	WELDING ELECTRODE FORMULATIONS -	4-3
	(PHASE I PART 3-A)	5-1
	Base Electrode Selection	5-1
	Base Electrode Coating Analysis	5-1
	Formulation Test Matrix	5-1
	Electrode Performance	5-4
	Discussion of Results	5-5
	Conclusions	5-8
	TAC REVIEW AND CSM ASSIGNMENTS	
	Experimental Electrode Coating	5-8
	Analysis	
	Re-Extrusion of Base Electrode	5-8
	Fundamental Principles of Porosity	5-9
	Formation	
	Weld Metal Porosity Control	5-10
6		5-11
J	WELDING ELECTRODE FORMULATIONS	
	PHASE I PART 3-B) BACKGROUND	6-1
	PYCKQKOOMD	6-2

SECTION	PAGE
EXPERIMENTAL PROCEDURE Electrode Formulation and Extrusion Welding Parameters and Joint Design X-Ray Radiography Metallographic Characterization Chemical Analysis Mechanical Testing	6-2 6-2 6-3 6-4 6-5 6-7 6-7
RESULTS AND DISCUSSION Electrode Extrusion Electrode Weldability Chemical Composition of Welds Radiographic Analysis Bend Test Hardness Testing Complete Weld Qualification for Four Selected Weldments	6-7 6-7 6-8 6-10 6-12 6-12 6-12
Relationship between Electrode Properties and Flux Ingredients	s 6-18
SELECTION OF TARGET FLUX SYSTEM	6-34
RESEARCH PERSONNEL	6-40
SUGGESTIONS FOR FURTHER INVESTIGATION	6-40
ACKNOWLEDGMENT	6-40
APPENDIX I Experimental Weld Hardness Data	6-41 6-41
7 WELDS MADE WITH CSM LC-2 ELECTRODES (Phase I Part 4)	7-1
OBJECTIVE SUMMARY BACKGROUND TEST RESULTS Fillet Welds Groove Welds All-Weld-Metal Tensile and Impact Welds Radiographs Microstructure	7-1 7-1 7-1 7-2 7-4 7-4 7-5

SECTION		PAGE
	Chemical Analysis	7-5
	Supplemental Work/Examinations	7-3 7-10
	Electrode Flux Analysis	7-10 7-10
	Weld Metal Chemistry	7-10 7-10
	Weld Metal Microstructure	7-10 7-12
	Microscopic Weld Metal Cracks	7-12 7-13
	Discussion	7-13 7-14
	Weld Metal Hardness	7-14 7-15
	Quality Assurance Procedures	
	Colorado School of Mines	7-16
	J. M. Minerals, Inc.	7-16
	Global Divers & Contractors, Inc.	7-17
	Conclusions and Discussion	7-18
		7-27

JOINT INDUSTRY UNDERWATER WELDING DEVELOPMENT PROGRAM PHASE I - FINAL REPORT December, 1995

EXECUTIVE SUMMARY BACKGROUND

The Joint Industry Underwater Welding Development Program was initiated by Global Divers & Contractors, Inc. and Colorado School of Mines Center for Welding and Joining Research in early 1993 with five participants and a budget of \$175,000. As work progressed, the number of participants increased to nine with a budget of \$305,000.

OBJECTIVES

Objectives of the program are to improve the properties of wet welds to the highest practical levels, and to determine what those properties are so they may be used as fundamental engineering design principals for solutions to underwater repair/construction problems, where wet welding vs. dry hyperbaric welding, usually results in significant savings in time and costs.

Areas of expected improvements include increased ductility and toughness of weldments, reduced hardness and susceptibility to hydrogen cracking in heat affected zones of base metals, reduced weld metal porosity and increased depths at which sound welds can be made.

HOW THE PROGRAM WORKS

Program work is guided by the Technical Activities Committee (TAC) which is made up of one member from each of the participating organizations, Global Divers and Colorado School of Mines. The participants are: Amoco Research Center, Chevron Research & Technology Company, Shell Offshore Engineering Research Department, Marathon Oil Company, Mobil Research & Development Corporation, Exxon Production Research Company, the U.S. Navy, U.S. Offshore Minerals Management Service and the U.K. Health and Safety Executive-Offshore Safety Division.

Global Divers provides management, welding engineering, technicians, welder/divers, hyperbaric facilities, welding/diving equipment and materials. Colorado

School of Mines provides scientists, a graduate research engineer dedicated to the program, welding electrode formulations, analytical equipment, technical reports on their research tasks, plus calibration in the preparation of other program reports.

Test Matrix and Base Metal

The test Matrix for this phase of the program includes the following tasks. The procedure for, and the results of, each task is discussed separately in this summary.

- Refinement of the multiple temper bead (MTB) wet welding technique used for the prevention of hydrogen cracking and reduction of hardness in the heat affected zones of crack susceptible (carbon equivalent ≥ .40 wt. pct.) base metal.
- Selection of optimum welding power source and auxiliary equipment for underwater wet welding.
- Development of improved electrodes through reformulations of flux coatings and selection of core wires. The program electrode (Ex 7) was chosen as the base electrode for improvement.
- A Qualify welding procedures for all position wet fillet and groove welds at 3 ft and 33 ft. and make all-weld-metal tensile and impact welds at 3, 33, 66, 95 and 165 ft with the improved electrode (CSM LC-2).

ASTM A537 Class 1, 3/4" steel plate was selected as the program base metal because of its proven propensity for hydrogen induced cracking, and excessive hardness, in the heat affected zone (HAZ) when welded with conventional wet welding procedures. Carbon equivalent of the A537 material was .462 including .20 carbon. Yield and ultimate design strength were 50 ksi and 70 ksi respectively.

Program welds were made on the A537 material with Ex 7 electrodes in the vertical position at -33 ft unless noted otherwise.

MULTIPLE TEMPER BEAD WET WELDING (PHASE I PART 1)

This unique wet welding technique involves three essential variables which were methodically investigated. Procedures and results are included in the following three section report.

Toe-to-Toe Distance

Microscopic (≥ 100x) examinations of the heat affected zones of a series of wet weldments demonstrated that to prevent hydrogen induced cracking in the HAZ of crack susceptible base metals, the distance between the toes of primary weld beads that tie into the base metal, and toes of temper beads, could vary from 1/16" to 3/16" with equal effectiveness. (Groove welds were made with toe-to-toe distances of 1/16", 3/32", 1/8" and 3/16".) No cracks were detected in the HAZ of any of the sixteen (4 from each weld) specimens examined. However, until temper bead input was substantially increased during welding done later, there was no significant reduction in HAZ hardness.

The fact that the toe-to-toe distance can vary so much, indicates that the MTB technique can be used under less than ideal underwater work conditions and by less than highly skilled welder/divers.

Time Intervals

For the prevention of HAZ hydrogen, it is essential that we know how long it takes for HAZ hydrogen cracks to develop, i.e., what is the maximum allowable time between deposition of primary weld beads and temper beads. Prior to, and during the program work, welders using electrodes other than the Ex 7 electrodes, saw HAZ cracks develop as welds were being made. Based on five experiences, it was concluded that the cracks developed within three to ten minutes.

To determine the maximum acceptable time between deposition of primary and temper beads, welds were made with the Ex 7 electrodes with the time intervals reported below. Results are based on microscopic (100 x) examination of heat affected zones.

Time Intervals	
	Results

Four minutes to ten minutes with \leq 30 second intervals.

No cracks Ten minutes to sixty minutes with ten minute intervals.

No cracks One hour to two hours with thirty minute intervals. No cracks

Two and one-half hours to four hours with thirty minute intervals.

All specimens had typical HAZ hydrogen induced cracks.

Supplemental Welds

For validation of the highly desirable but unexpected results (2 hours with no cracks), Ex 7 electrodes were used to make an untempered 3/4" x 12" groove weld on ASTM A516 Gr. 70 (CE .44) material which, when welded with commercial wet welded electrodes, developed HAZ cracks within ≤ 10 minutes (welder saw HAZ cracks while welding). During welding with Ex 7 electrodes the welder saw no cracks and none were detected later with magnetic particle examination. And, one of four cross sections showed no cracks when examined at 100x.

A second weld was made on the same material with the Ex 7 electrodes plus temper beading. For this MTB weld, HAZ hydrogen cracking was eliminated.

Knowing the maximum time interval between deposition of primary weld beads and temper beads is essential to the selection of the most efficient sequence for deposition of weld beads/layers.

Temper Bead Heat Input

Throughout the many MTB welding experiments, prevention of HAZ hydrogen cracking was consistently accomplished without any deliberate increase in temper bead heat input. For the same welds, maximum Vickers 10kg 325, as specified by AWS D3.6 for Class A (dry) welds, was maintained in the HAZ and weld metal, except in a very small area (≤ 1/8" x 3/16") in the HAZ beneath the toes of cap passes. To meet the maximum hardness specified by AWS D3.6 for dry welds, a series of welds were made using four levels of increased heat input at the toes of cap passes, plus a fifth unique "half-bead" wet welding procedure. i.e., the thickness of outermost cap passes that overlapped the excessively hard base metal HAZ was reduced approximately 50% (by grinding) and then retempered. For the weld with the fourth level of heat input, (370 kJin), average hardness in the critical area was 324 with two locations registering 332 and 355. While these harnesses are acceptable for most applications, the half-bead technique was next used for further reduction in maximum HAZ hardness. Results were; average hardness in critical area 282 with 300 maximum. (See Summary of Table 1).

MTB Conclusions

jip\finalrpt.995

Wet welds made with the Ex 7 electrodes at -33' on material that is subject to HAZ hydrogen cracking (CE .462) and excessive hardness (C.20), met AWS D3.6 Class A (dry) weld requirements as specified for lack of cracks and maximum hardness.

<u>Supplemental Information</u>

Wet welds have long been maligned for lack of toughness as determined by Charpy V-notch impact tests made at minimum design service temperature (28-32° F). Wet welds made during the Program exceed the AWS D3.6 requirements for Class A (dry) welds down to -25° F. See accompanying Energy Absorption Temperature Transition Curve. Also, note HAZ notch toughness of 51 ft lb at 28° F.

SUMMARY OF VICKERS 10 KG HARDNESS TEST RESULTS IN HAZ OF WET FILLET WELDMENTS (See Table 1 for Details)

WELDING VARIABLES	AVERAGE TOE	HAZ HARDNESS <u>OTHER</u>	TOE HARDNESS COMMENTS
No Temper Beads	463	291	5 of 6 ≥ 435
Multiple Temper Beads Heat Input 25.5 kJ/in	431	286	2 of 6 ≥ 435
Multiple Temper Beads Heat Input 32.2 kJ/in	410	274	3 of 8 ≥ 435
Multiple Temper Beads Heat Input 34.6 kJ/in	439	270	3 of 8 ≥ 435
Multiple Temper Beads Heat Input 37.0 kJ/in	324	259	2 of 3 ≥ *325
Multiple Temper Beads Plus Half-Bead Technique Heat Input 29.3 kJ/in	282	277	300 max.

^{*}AWS D3.6 specifies Vickers 10 kg 325 maximum for Class A (dry) welds.

NOTE:

Heat inputs are expressed in welding arc output in energy units (kJ) per linear inch at weld joint.

Amps x Volts x 60 = Jules per inch in. per minute

WELDING POWER SOURCES AND AUXILIARY EQUIPMENT (Phase I Part 2)

For in-air welding, previous Global Divers experience indicated that, depending on base metal, filler metal and welding conditions, a variable pulse welding current output improved arc stability, molten metal droplet transfer and weld metal geometry. Objective of this part of the program was to determine the best power source with or without auxiliary equipment, for wet welding.

Test Matrix

Multiple pass vertical fillet welds were made at -33' on both straight and reverse polarity with the Program Ex 7 electrode and a commercially available wet welding electrode with each of the five power sources that were evaluated. Then, the two best performing power sources were used for more difficult welds, i.e. overhead at -3'.

Equipment Tested

The following equipment was tested in this experimental program:

At -33' Pow Con 300SS Inverter with and without pulsed arc.

Thermal Dynamics Arc 300 GMS Inverter with and without pulsing.

Miller XMT CC/CU Inverter

Miller 251 D Diesel Driven Generator

Miller Gold Star Transformer/Rectifier

At -3' Pow Con Inverter with Pulse Ac

Miller 251 D Generator

Examinations/Evaluations

Examinations of each weldment included visual, two macros and a fillet weld break test. Weldments were graded on weld bead geometry, amount of porosity, degree of root penetration, and lack of undercut. In addition to weld quality, the performance of the different combinations of power sources and auxiliary equipment were evaluated according to their general weldability, power output, response time, ease of arc initiation and maintenance, arc stability, welder control, and travel speed.

Results

The three inverter power sources, with and without pulsed arc, clearly outperformed the diesel driven generator and transformer/rectifier. Surface appearance of the welds was superior, penetration was increased and there was a reduction in porosity. Additionally, further improvement in weld bead morphology was observed with pulsing. Supplemental Information

Compared to the second choice, diesel-driven generator, the inverter power sources have additional advantages of not requiring daily fueling and maintenance. The fact that they operate quietly and with no exhaust emissions is highly desirable, especially when work space is limited. The compact construction of the inverter power sources requires minimum space and lifting capacity at the work site. An inverter based power source typically weighs between 70 and 90 pounds, while most diesel-driven generators weigh around 2,000 to 3,000 pounds. However, it should be noted that inverter power sources require a steady AC power input. If the primary power source is often subjected to overload, a separate generator should be provided for the inverter power sources.

WELDING ELECTRODE FORMULATIONS (Phase I Part 3A) BACKGROUND

Wet welds made with even the best available commercial or proprietary ferritic welding electrodes, fail to meet the radiographic and ductility requirements specified by AWS D3.6 for Class A (dry) welds. Porosity, while fine and evenly distributed, is excessive, and wet weld bend specimens typically fail when tested on radii required for Class A welds. (2T or 3-1/3T depending on design strength of base metal). Initial objective of this part of the program is to, through reformulation of electrode flux coatings and selection of core wires, develop electrodes with less porosity and increased ductility.

The Program Ex 7 electrode was selected as the electrode for modification/improvement because of it's excellent weldability and, when compared to other available electrodes, superior mechanical properties. Qualitative analysis of the base (Ex 7) electrode flux coating, using x-ray defraction techniques was performed with the results shown in Table II.

FORMULATION TEST MATRIX

The Program Report provides a comprehensive explanation of reasons for the initial test matrix for the experimental flux coatings (Table III) which are based on two levels of calcium carbonate additions (10 and 12 wt. pct.), three levels of ferromanganese additions (1.0, 1.5 and 2.0 wt.pct.), and four levels of nickel additions (0.5, 1.0, 1.5 and 2.0 wt. pct). Initially eight coating compositions were produced and tested.

ELECTRODE PERFORMANCE

While depositing weld beads on plate to determine optimal welding parameters, some of the electrodes produced weld beads with good contours with no surface porosity, arc was stable, slag coverage was good, and easily removed. However, with all eight electrodes, weld beads deposited on the previously deposited beads, exhibited excessive porosity. The erratic behavior was attributed to excessive flux coating thickness-to-rod diameter, combined with eccentric core wire. Groove welds planned for the electrodes were not made.

A second set of five batches of electrodes, with smaller coating thickness-to-corerod diameter ratio, and more concentric core wires, was extruded and tested later. These

jip\finalrpt.995

electrodes performed better than the previous ones, however multiple pass welding produced poor bead morphology and excessive porosity in overlapping weld passes. The causes of the problems were investigated, and after more detailed analysis of the Ex 7 flux coating, the compositions of new batches (24) of electrode were determined as described in Phase I Part 3B Summary.

WELDING ELECTRODE FORMULATION (Phase I Part 3B) BACKGROUND

Based on the second and more detailed analysis of the Ex 7 base electrode, and experience with the thirteen previous experimental flux formulations and sometimes eccentric core wires, the Center for Welding and Joining Research of the Colorado School of Mines targeted the screening of multiple flux systems for selection of the optimal electrode. A total of twelve flux coating compositions were designed for testing on two core wires. The fluxes were dry mixed at CSM and extruded by J.M. Minerals, Inc. in Darby, Pennsylvania. Global Divers processed the electrodes for use underwater and made the welds. Weldments were, as a minimum, examined as specified by AWS D3.6 for Class A (dry) welds. Bend tests, hardness surveys, chemical analyses and radiography were performed on all twenty-four experimental welds to screen the electrodes. Four of the welds were selected for further examinations including determination of impact toughness, weld metal tensile properties and microstructural characterization. Based on these results, one combination of flux composition and core wire was identified as producing the best overall results.

EXPERIMENTAL PROCEDURES

Approximately seventy pounds of each of the twenty-four batches of electrodes were produced for making 3/4" vertical groove welds at -33 ft.

Radiography was performed and graded as specified by AWS D3.6 for Class A (dry) and Class B (wet) welds. For characterization of the microstructure of four sets of the welds, transverse cross sections were polished and etched and examined at magnifications of 200 and 500X. Quantitive metallography, using an image analyzer, was used to determine the volume fractions of acicular ferrite, grain boundary ferrite and FS phases. Chemical analysis of all welds were performed using an emission optical

(ip)(finalrpt.995 1 - 11

spectrometer, in particular, the carbon, sulphur, oxygen, and nitrogen contents were determined using interstitial analyzers.

Side bend tests and Vickers 1 kg hardness surveys were conducted on all weldments. Welds made with four of the electrodes were examined for HAZ and weld metal Charpy V-notch toughness at 28° F and all-weld-metal properties including yield and ultimate tensile strength, elongation and reduction in area at time of fracture.

RESULTS AND DISCUSSION

As a Summary, this document does not include voluminous amounts of pertinent information that is contained in the Welding Electrode Formulations (Phase I Part 3B) part of the Final Report.. This summary is primarily concerned with the final results of the work that was dedicated to improvement of wet welding electrodes. The success of CSM's program to develop an electrode capable of producing welds with better mechanical properties, and less porosity than the Ex 7 base electrode is demonstrated in the following comparison of averaged test results:

- LC-2 radiographs met the AWS D3.6 requirements for Class A (dry) welds. Ex 7 radiographs met Class B (dry) weld requirements. (Failed Class A due to excessive porosity.
- LC-2 all-weld-metal tensile strength was 83.3 ksi vs. 73.4 ksi for the Ex 7 weld metal.
- LC-2 weld metal elongation averaged 12.3% (10 and 14.6%). Ex 7 elongation averaged 11.5% with 12.5% maximum.
- LC-2 Charpy V-notch weld metal impacts, tested at 28° F, averaged 29.5 ft lbs vs. 29.0 ft lbs for Ex 7 weld metal.
- There was no improvement in side bend test result. Welds made with both electrodes were good for 3-1/3 to 4T bend radii.
- Hardness of weld metal deposited with both electrodes was substantially less than the maximum specified by AWS D3.6 for Class A welds.

WELDS MADE WITH CSM LC-2 ELECTRODES (Phase I Part 4) BACKGROUND

During Phase I Part 3, Colorado School of Mines (CSM) produced twenty-four experimental welding electrodes with primary targets of reduced porosity and increased ductility. Several of the electrodes produced welds with reduced porosity and improved mechanical properties.

The one designated as LC-2 was selected as best of the twenty-four because, when compared to the excellent Ex 7 program electrode, the welds had less porosity (AWS D3.6 Class A vs. Class B), increased all-weld-metal elongation (average 12.3% vs. 11.5%) and 83.3 ksi ultimate tensile strength vs. 73.4 ksi for the Ex 7 electrodes.

TEST MATRIX

For this part of the program, CSM produced seventy pounds of duplicated LC-2 electrodes for use in making the welds for the examinations shown in Table A. As shown, all position groove and fillet welds were made at -3 and -33 ft. All-weld-metal tensile and impact welds were made at depths of 3, 33, 66, 99, and 165 ft. All of the wet weldments were, as a minimum, examined as specified by AWS D3.6 for Class A (dry) welds.

RESULTS

All position fillet welds met the requirements of AWS D3.6 for Class A welds. All position groove welds met the visual, radiographic, tensile, and Charpy V-notch impact requirements for Class A welds. Sixty-one of sixty-one bend specimens tested at 3-1/3T were satisfactory. (AWS D3.6 specifies 2T for Class A welds). For the all-weld-metal tensile and Charpy V-notch impact welds, yield and ultimate tensile strength decreased rather consistently from -3 to -165 ft, with an ultimate tensile strength of 90.1 ksi at 3 ft and 55.9 ksi at -165 ft. The rate of decrease in the weld metal Charpy V-notch impact values was similarly consistent with 32 ft lbs (28° F) at -3 ft, and 17 ft lbs at -165 ft. Weld metal elongation declined from an inconsistent 7.5% at -3 ft (8.9% at 66' and 99') to 3.7% at -165 ft. (See Table 1). Radiographs of the welds made at depths of 3, 33 and 66 ft met the requirements of AWS D3.6 for Class A (dry) welds, the 99 ft weld was Class B and the 165 ft weld was unsatisfactory due to excessive porosity.

jiptlinalrpt.995 1 - 13

The reheated weld metal microstructure near the root of the weldments showed a very good percentage of desirable acicular ferrite which declined steadily from 61% at -3 ft to 49% at -165 ft. At -3 ft, polygonal ferrite was 36% and side plate ferrite was 3%. At -165 ft polygonal ferrite was 37% and side plate ferrite increased to 14%. (See solid lines on Table 2-A).

Chemical analysis of the weld metal showed and unexpected (based on reports by others) increase in manganese from .62 (wt. pct.) at -3 ft to .91 at -165 ft. Silicon ranged from .41 at -3 ft to .33 at 165 ft. Carbon increased from .12 at -3 ft to .19 at -165 ft. (See solid lines on Table 3-A). Values for the elements are expressed in weight percent.

Microscopic cracks detected in the weld metal had no adverse affect on results of the 3-1/3T bend test. (AWS D3.6 specifies 6T radius for Class B (wet) welds). However, cracks detected at any magnification are undesirable, and plans to eliminate them include reduction in weld metal manganese.

Conclusions and Discussion

It has long been recognized that no single wet welding electrode would have equally good mechanical properties, and weldability, at all water depths. It is thought that to make satisfactory wet welds down to 400-500 ft, four different types of electrodes, each with it's own depth range, might be required.

Based on test results of all position fillet and groove welds made at -3' and -33 ft, and vertical groove welds made at those depths plus 66', 99', and 165', the LC-2 electrode is an excellent shallow water (3' to 66') wet welding electrode. Welds made from -3' to -66' met all AWS D3.6 requirements for Class B (wet) welds plus Class A (dry) weld requirements for radiography, tensile strength and Charpy V-notch impacts at -10° F.

Further modification to flux formulations need to be made for deeper depth ranges. Also, the molten slag produced by consumption of the LC-2 electrode is excessively fluid at all depths. This problem can be mitigated by modification of the flux formulation or application of a proprietary overcoat by Global Divers.

The high percentage of desirable acicular ferrite (61% at -3 ft and 57% at -66 ft.)

jip\finalrpt.995

is a welcome result of welds made with the LC-2 electrodes. However, when compared to the 10.0%, and 14.6% (both at -33 ft) elongation of weld metal deposited with the first batch of LC-2 electrodes, the 7.5% at -3 ft and 8.9% at 33 and 66 ft produced by this second batch of LC-2 electrodes was disappointing. However, it is anticipated that the cause of the problem will be identified and eliminated early in Phase II.

Major break-throughs during Phase I were:

- Development of wet welding procedures that when used on base metals that were highly susceptible (CE .462 with carbon .20) to HAZ hydrogen induced cracking, and excessive hardness (VH 10 kg 480), produced the following results:
 - a. HAZ cracking was eliminated.
 - Maximum hardness met the requirements of AWS D3.6 for Class A (dry) welds.
 - Weld metal and HAZ Charpy V-notch test results significantly exceeded AWS D3.6 requirements for Class A welds.
- II. Time for development of HAZ hydrogen cracking was extended from \leq 10 minutes to > 1.5 hours.
- III. Through the elimination of porosity, radiographs met the requirements of AWS D3.6 for Class A welds.

Challenges for Phase II include, through the reformulation of flux coatings and selection of core wires, compensation for pressure induced changes in weld metal chemistry and micro-structure plus reduced porosity.

UNDERWATER WELDING DEVELOPMENT PROGRAM PHASE I PART 4 TESTING MATRIX - TABLE A

Fillet Weld Break						1.									Ī			
Charpy Impact WWMHAZ @ +28F			5 HAZ	e ww.							2 HB/	5 WM:-		With the same of t			6 WM**	6 WM**
Vickers Hardness (10 kg)					***************************************			The second secon		***************************************								
Chemistry and Micro Structure Exam (% PF, AF & FS)												,			THE REAL PROPERTY OF THE PROPE			
Marca Part Test		-			2	2	2		***************************************			1	2 0	10	2		-	1
Side Bends (6t to 2t - Progressive & Fixed Bend Radii)	4+4	4 + 4	7 + 7					7 + 7	4 + 4	4 + 4	4 + 4							
All Weld Metal Tension											***************************************							
Fillet Weld Shear							-											
Reduced Section Tension		2																
жар-ор-адк у >	X	×	√ ×					$\frac{1}{x}$	X	×	X					×	X	X
♥ ○ № — — ○ □ □		3G: X X	$\left\{ \cdot \right\}$	# X X	X X	4F X	3F X	_	26 36.	-	3G X	TE X	+	X >	 		3G X	3G X
Test Weid Joint Type	Groove	Groove	Groove	Filler	Fillet	Fillet	+	Groove	1		a	-	10 to 10	-			+	Groove 3(
Water Deptin (Feet)	en e			6 6	3		30	1				33	-		33 E	_	-	iret Doring

' First Position

RADIOGRAPHIC RESULTS, AWSD3.6: 3, 33 AND 66 ft WELDS CLASS A, 99 ft CLASS B, 165 ft UNSATISFACTORY DUE TO EXESSIVE POROSITY. WELD METAL ELONGATION: 3 ft -7.5 %, 33 ft -8.9 %, 66 ft -8.9 %, 99 ft -5.6 %, AND 165 ft -3.7 %

ULTIMATE CHARPYS YIELD

TABLE 1

BROKEN LINES REPRESENT TYPE AND PERCENT OF FERRITE OF REHEATED WELD METAL BELOW CAP PASSES. SOLID LINES REPRESENT TYPE AND PERCENT OF FERRITE OF ROOT PASS NEAR THE FUSION LINE. SIDE PLATE FERRITE INCREASED WITH DEPTH FROM 6% AT 3 ft TO 10% AT 165 ft (BELOW CAP PASS) SIDE PLATE FERRITE INCREASED WITH DEPTH FROM 3% AT 3 ft TO 14% AT 165 ft (ROOT PASS) POLYGONAL FERRITE - ACICULAR FERRITE

TABLE 2-A

120 1 8 छ **₹** 2000 SOLID LINES REPRESENT CHEMISTRY OF REHEATED WELD METAL NEAR THE ROOT PASS. BROKEN LINES REPRESENT CHEMISTRY OF REHEATED WELD METAL BELOW CAP PASSES. PRESSURE INDUCED CHANGES IN WELD METAL CHEMISTRY (3 TO 165 ft) <u>8</u> 200000 8 (M)(M) WELDS MADE WITH CSM LC-2 ELECTRODES 900000B NAME OF TAXABLE PARTY. 2 1 8 Sandy) WATER DEPTH (ft) 8 8 ١ 2 ١ 8 100000 တ္တ 8 I SDRIN, SHINKS Ì 8 8 ı MANGANESE 2 SILICON CARBON OXYGEN 5 980 0.80 0.70 PERCENTAGE (TH:OHW Y8) S S S S 0.60 0 040 000 0.20 0.0 0

TABLE 3-A

JOINT INDUSTRY UNDERWATER WELDING DEVELOPMENT PROGRAM PHASE I - FINAL REPORT December, 1995

BACKGROUND

The objectives of the Joint Industry Underwater Welding Development Program are to improve the properties of wet welds to the highest levels practical, and to determine what those properties are, so that technical information is available for determining solutions to underwater repair and construction problems. Compared with dry hyperbaric welding, wet welding usually results in significant savings in time and costs.

With the development of this program, areas of expected improvements of wet welds include: 1) increased ductility and toughness, 2) reduced heat affected zone hardness and susceptibility to hydrogen cracking, 3) reduced weld metal porosity, and 4) increased depth at which sound welds can be made.

For execution of the various developmental tasks, Global Divers & Contractors, Inc. (Global Divers) provides program management, welding engineering, technicians, welder/divers, hyperbaric facilities, welding/diving equipment, and material. To provide fundamental interpretation of the experimental results and understanding of underwater wet welding consumables, the Center for Welding and Joining Research of the Colorado School of Mines (CSM) provides scientists, a graduate research engineer, welding electrode manufacturing facilities, and analytical equipment. CSM will also provide technical reports on their research tasks.

From the selection of specific R&D tasks to the monitoring of work execution, this program is conducted under the direction of a steering committee, the Technical Activities Committee (TAC), with one representative from each participating firm, Global Divers and CSM. The representative from Global Divers serves as the chairman of the TAC. There are currently nine participants in the program, including six major petroleum companies (Amoco, Chevron, Marathon, Mobil, Shell and Exxon), the U.S. Navy, and two government regulating agencies (U.S. Minerals Management Service and U.K. Health and Safety Executive). Names and addresses of the TAC members are shown in Appendix I of this report.

This report covers work performed as defined in the January 1993 Test Matrix (Appendix I-A) plus supplemental work specified by the TAC. The original Test Matrix was based on a budget of \$175,000. and five participants. With the addition of four more participants, funds available to the program increased to \$305,000. Specific tasks include:

- Part 1 Development of the Multiple Temper Bead Wet Welding Technique (MTB) to prevent hydrogen induced cracking, and to reduce hardness, in the heat affected zones (HAZ) of crack-susceptible base metal (CE>.40).
- Part 2 Evaluation of welding power sources and auxiliary equipment and determination of that most suitable for underwater wet welding.
- Part 3 Formulation of welding electrodes to increase ductility and reduce porosity in wet welds.
- Part 4 Use reformulated electrodes to qualify all position fillet and groove welds at -3' and 33' and determine all-weld-metal tensile and impact properties of wet welds made at depths of 3, 33, 66, 99 and 165 ft.

Welds were made on highly crack susceptible ASTM A537, Class 1 (CE .462 wt. pct with .20C) base metal selected by the TAC and examined, as a minimum, in accordance with the requirements of AWS D3.6-93 Specifications for Underwater Welding for Class A (Dry) Welds.

EXPERIMENTAL PROGRAM AND TEST MATRIX

Base Metal Selection

Part I of the Test Matrix is aimed at mitigating the problems associated with wet welding with ferritic welding electrodes on base metals that are sensitive to hydrogen-induced underbead cracking. Prior test results of 122 welds made on 22 different types of steels demonstrated that base metals with carbon equivalents greater than 0.40 wt. pct. were subject to heat affected zone hydrogen cracking.

Carbon equivalent, as defined by the equation below, describes the hardenability of the alloy being welded and its susceptibility to cracking. Particularly in high cooling rate conditions, carbon equivalent is of great importance in specifying preheat and post heat to avoid HAZ cracking in welds made in air.

jip/finalrpt.995 2 - 2

$$CE_{IIW} = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$$

To effectively test the multiple temper bead technique, the TAC members specified that the program material have a carbon equivalent greater than 0.45 wt. pct. Additionally, material shall have a minimum of 0.20 wt. pct. carbon. The minimum yield and tensile strengths must be 50 and 70 ksi, respectively. The chemical composition of the 3/4" thick ASTM A537 Class 1 steel plate selected for this program is reported in the following Table I.

Table I. Chemical Composition of the ASTM A537 Class 1 steel selected for the Experimental Program.

C	Mn	Р	S	Si	Ni	Cr	Cu	CE _{IIW}
0.20	1.50	0.014	0.019	0.38	0.03	0.02	0.03	0.462

The certificate of analysis of the base metal selected is shown in Appendix II. The yield and tensile strengths of this steel are 55.3 and 82.2 ksi, respectively. Impact toughness measured at -62°C (-90°F) ranged between 26 and 32 ft-lbs. As expected of a hot rolled material, the plate exhibited elongated inclusions, mainly manganese sulfide and silicates. The ASTM A537 Class 1 material chosen met the TAC requirements.

However, with the exception of North Sea structures, the majority of existing offshore platforms are fabricated using ASTM A36 grade materials for which there is no control of chemical composition, except for carbon and manganese. As a result, these materials may present an erratic behavior with respect to hydrogen-induced HAZ cracking and hardness distribution in the heat affected zone. For these reasons, two other base metals with carbon contents of 0.14 and 0.24 wt. pct. were also used in the multiple temper bead program. The carbon equivalent of the two materials were 0.26 and 0.415 wt. pct., respectively. An ASTM A588-88A Grade B material with carbon equivalent 0.449 wt. pct. was also used in the multiple temper bead experiments.

The large differences in carbon content and carbon equivalent observed in the four steels allow for better verification of the effectiveness of the multiple temper bead technique.

Multiple Temper Bead Wet Welding Technique

Wet groove and/or fillet welds were made with and without multiple temper beads (MTB) on the highly crack susceptible A537 Cl.1 (CE .462 with C .20) base metal plus four other materials; A36 (CE .38), A36 (CE .415 with .24 C), A516 Gr. 70 (CE .44) and A-588-88A (CE .449).

Time between deposition of primary weld beads that tied in to crack susceptible base metal and deposition of temper beads was varied from thirty seconds to four hours. Distance from toes of primary weld beads to toes of temper beads were 1/32", 1/8", 3/32" and 3/16". Heat input was gradually increased from less than 25.5 to 37.0 kJ/in, plus a half-bead technique was used with 29.3 kJ/in heat input. All groove welds were severely restrained, fillet welds were made with varying degrees of restraint.

Power Sources and Auxiliary Equipment

Three different inverter type (with and without pulsing), one diesel-driven generator and one transformer/rectifier type welding power sources were used in Part 2 of the test matrix with welds being made a t -3 and -33 ft.

Flux Formulation and Electrode Extrusion

Based on chemical and x-ray analyses, the main ingredients of the program electrode, Ex 7, were determined as: TiO₂, SiO₂, K₂O.Al₂O₃.6SiO₂, and CaCO₃. Potassium silicate (K₂O.SiO₂) was the binder. To increase the amount of acicular ferrite in the weld metal, which has a positive effect on increasing toughness and counteracting the effects of porosity, additions of manganese and nickel to the electrode flux coating were proposed. These metals, in powder form, were mixed with the flux ingredients for extrusion. The manganese content varied from 1.0 to 2.0 wt. pct., and nickel varied from 0.5 to 2.0 wt. pct. Industrial grade chemicals were used for the extrusion of the electrodes. Low carbon steel rods were used as the core rod for extrusion. The chemical composition of the core rod is shown in Table II.

Table II. Chemical Composition of the Low Carbon Steel Core Rod used in Extrusion.

С	Mn	Р	S	Si	Ni	Cr	Cu
0.069	0.63	0.008	0.016	0.08	0.03	0.02	0.03

jip/finalrpt.995 2 - 4

Welding Parameters and Joint Design

As a result of the large number of welds performed for diverse purposes in the multiple experiments, different welding parameters were used throughout this program. The individual welding data will be provided in the specific sections of this report. Welds were made at -33' unless noted otherwise.

Light Metallography

To ensure the detection of underbead cracking and hydrogen fissures in the HAZ and weld metal, cross sections of the wet weldments were examined at ≥100X magnification, instead of the 5X as specified by the AWS D3.6 "Specification for Underwater Welding" for Class A (dry) welds.

Cracking Susceptibility of the ASTM A537 Class 1 steel

A large number of welds were made on an ASTM A537 Class 1 steel plate with 0.462 wt. pct. carbon equivalent and 0.20 wt. pct. carbon. A 3/4" thick plate was used for the all-position confirmation weldments. For welds that required thinner sections (for example, 5/8"), the plate was milled to thickness.

A 5/8" groove weld (without temper bead deposition) was initially produced to confirm the cracking susceptibility of the material. A detailed Global Divers welding report with the welding parameters, joint design and bend test results is included in the text of the report. As expected from a steel with high carbon equivalent, cracking occurred in the heat affected zone of both bead-on-plate welds and fillet welds, as shown in Figure 1, initiating at the toe region and propagating inward. The face-bend specimens in Figure 2 also show that failure occurred in the heat affected zone of the welds. All specimens failed at less than 20° bend angle. Additionally, two 2 T bend specimens of a dry bead-on-plate weldment also failed due to cracks at the toe of the weld which further confirmed the extreme crack sensitivity of the selected base metal. The SRC Engineers, Inc. report on the bend test results is included as Appendix III.

Micrographic examinations were also performed on these welds to determine the nature of the cracks in the heat affected zone. Cracks were reported to be visible at 50X magnification and caused by hydrogen. A test certificate from SRC Engineers, Inc. on the

ijo/tinalrot.995 2 - 5

micrographic analysis is included in the following page. The remaining three test certificates of these tests can be found in Appendix IV of the report.

jip\finalrpt.995

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
TEST PERFORMED:	Macro Etch on weld sample (No T.B.) P.O. #GD406244 Weld Sample- 3/4" x 8"(#1) 3G
Specification:	In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 5%, 50%, & 100% Magnification. Evidence of Hydrogen Cracking were found near the cap of the weld. Cracks were visible at 50%.

	EQUIPMENT UTILIZED FOR TEST
Type: Metallo	raph
Manufacturer: _	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

SRC Job No. 92-352

Certified By: Im free Date: 7

Reviewed By: Date: 07-01-83

GLOBAL5.MAC

Weld Beads on Plate

Fillet Weld

Fig. 1

Examples of HAZ Crack Sensitivity of A537 Cl.1 (CE .462) Plate

20° Bridge Bend Failures

Fig. 2

BACKGROUND

Appendices

Table of Contents

<u>Documents</u>		Appendix
Technical Ad	ctivities Committee Members and Associates	Į
Original Tes	t Matrix (January 1993)	I-A
Chemical Co	II	
Results of B made on the	III	
Results of m made on the	IV	
NOTE:	Weldments and testing reported in Appendices III and IV were made to confirm crack susceptibility of the ASTM A537 Class 1 base metal (CE .462 wt pct including .20 carbon)	

APPENDIX 1

TECHNICAL ACTIVITIES COMMITTEE MEMBERS MAILING ADDRESSES

DR S IBARRA

AMOCO RESEARCH CENTER

P O BOX 400 NAPERVILLE IL 60566 PHONE 708/420-4632 FAX 708-961-7971

DR STEPHEN LIU

COLORADO SCHOOL OF MINES

METALLURGICAL & MATERIALS ENGINEERING GOLDEN CO 80401 PHONE 303/273-3025 FAX 303 273-3795

MR RONALD A DENNIS

CHEVRON RESEARCH & TECHNOLOGY COMPANY

STAFF MATERIALS ENGINEER 100 CHEVRON WAY RICHMOND CA 94802-1627 PHONE 510/242-2353 FAX 510/242-4614

MR CHARLES E SMITH

MMS DEPARTMENT OF INTERIOR

MS 4700 381 ELDEN STREET HERNDON VA 22070-4817 PHONE 703/787-1559 FAX 703/787-1010

MR PETER A SANDY

MARATHON OIL COMPANY

P O BOX 3128 HOUSTON TX 77253 PHONE 713/296-3122 FAX 713/296-3190

MR MIKE STURROCK

MOBIL RESEARCH & DEVELOPMENT CORP.

DALLAS E & P ENGINEERING 13777 MIDWAY ROAD DALLAS TX 75244- 4390 PHONE 214/851-8926 FAX 214/851-8349 MR GENE MITCHELL

NAVAL SEA SYSTEMS COMMAND

CODE 03M2

WASHINGTON DC 20362-5101 PHONE 703/602-0205

FAX 703/602-0247

FAX 713/544-8826

DR RICHARD SWANSON

SHELL DEVELOPMENT COMPANY

OFFSHORE ENGINEERING RESEARCH DEPARTMENT P O BOX 1380 HOUSTON TX 77251-1380 PHONE 713/544-8729

MR R. J. (BOB) FRANCO

EXXON PRODUCTION RESEARCH COMPANY

SENIOR ENGINEER ASSOCIATE
DRILLING & COMPLETIONS DIVISION
MATERIALS SECTIONS
P. O. BOX 2189
HOUSTON, TX 77252-2189
PHONE 713/965-4707
FAX 713/965-7860

HEALTH & SAFETY EXECUTIVE

OFFSHORE SAFETY DIVISION FERGUSON HOUSE, 15 MARYLEBONE RD LONDON NW1 5JD PHONE 011-44-071-243-5810 FAX: 011-44-071-243-5807

(PROJECT OFFICER MONITORING PROJECT ON BEHALF OF HSE)
DR JLM ROBERTSON
ATOMIC ENERGY AUTHORITY
MARINE TECHNICAL SUPPORT UNIT
CULHAM LABORATORY
ABINGDON OXFORDSHIRE 0X143DB
ENGLAND UK
PHONE 44-1235-46-3715
FAX 44-1235-464207

MR C E "WHITEY" GRUBBS

GLOBAL DIVERS & CONTRACTORS INC

P O BOX 10840 NEW IBERIA, LA 70562-0840 PHONE 318/367-3483 FAX 318/365-2875

COPIES TO

DR DAVID OLSON
COLORADO SCHOOL OF MINES
METALLURGICAL & MATERIALS
ENGINEERING
GOLDEN CO 80401
PHONE 303/273-3025
FAX 303 273-3795

MR ROBERT MURRAY

NAVAL SEA SYSTEMS COMMAND

SUPERVISOR OF SALVAGE CODE OOC

706 CYPRESS ROAD

SEVERNA PARK MD 21146

PHONE 703/607-2761

FAX 703/607-2757

MR TOM WEST WELDING ENGINEERING SERVICES 109 WISTERIA DRIVE LAFAYETTE LA 70506

LAFAYETTE LA 70506 PHONE 318/984-1891 FAX 318/981-8124

MR JS FORTENBERRY
MGR OFFSHORE DESIGN &
CONSTRUCTION
CHEVRON RESEARCH & TECHNOLOGY
935 GRAVIER STREET
NEW ORLEANS LA 70112

PHONE 504/592-6468 FAX 504/592-7073

MR FELIX DYHRKOPP

MINERALS MANAGEMENT SERVICE 1201 ELMWOOD PARK BOULEVARD NEW ORLEANS LA 70123-2394 PHONE: 504/736-2893 FAX: 504/736-2426

MR J D (JAMES) THEISEN

EXXON RESEARCH & ENGINEERING

CO.

GULF COAST DIVISION

P O BOX 2958

BAYTOWN TX 77522-2958

MR NICK ZETTLEMOYER

EXXON PRODUCTION RESEARCH

COMPANY

OFFSHORSE DIVISION STRUCTURAL ENGINEERING SECTION P O BOX 2189 HOUSTON TX 77252-2189 PHONE 713/965-7435 FAX 713/966-6304

MR HOWARD SAVAGE EXXON PRODUCTION RESEARCH CO.

MATERIALS SECTION P O BOX 2189 HOUSTON TX 77252-2189 PHONE 713/966-6257 FAX 713/965-7860

MR DENIS MARSHALL
GENERAL MANAGER
GLOBAL DIVERS & CONTRACTORS INC
P O BOX 10840
NEW IBERIA LA 70562-0840
PHONE 318/367-3483
FAX 318/365-2875

MR THOMAS J REYNOLDS

GLOBAL DIVERS & CONTRACTORS INC

P O BOX 10840

NEW IBERIA LA 70562-0840

PHONE 318/367-3483

FAX 318/365-2875

MR DARRYL PHILLIPS
WELDING SPECIALISTS
GLOBAL DIVERS & CONTRACTORS INC
P O BOX 10840
NEW IBERIA LA 70562-0840
PHONE 318/367-3483
FAX 318/364-3829

PHONE 713/425-1801 FAX 713/425-1801

UNDERWATER WELDING DEVELOPMENT PROGRAM

TEST MATRIX

Phase I for the Development of Underwater Wet Welding

January - 1993

GLOBAL DIVERS & CONTRACTORS, INC. Technical Services Division

COLORADO SCHOOL OF MINES Center for Welding & Joining Research

TEST MATRIX

PHASE I

TABLE OF CONTENTS

<u>PART</u>	PROGRAM SUBJECT	PAGE
1	Multiple Temper Bead Technique	1 - 5
2	Power Sources	6-9
3	Electrode Formulation	10 - 14
4	Welding Procedures	15 - 17
	Phase I Schedule	18
	Phase I Cost Estimate	19

MULTIPLE TEMPER BEAD WET WELDING TECHNIQUE

BACKGROUND

The multiple temper bead (MTB) wet welding technique was developed to prevent hydrogen induced under-bead cracking in the hardened heat affected zones (HAZ) of crack susceptible (≥ .40 CE) high strength steels. It has been qualified and used to repair offshore structures with demonstrated crack susceptible materials with carbon equivalents ranging from .416 To .455, and has been effective on normalized steel with a carbon equivalent of .47.

One set of test results showed that the MTB technique is also capable of significantly reducing HAZ hardness. (Vickers 450 reduced to 320) and improving charpy-v-notch impacts (22 ft lbs increased to 36 ft. lbs. at -10° C).

During the qualifications of MTB welding procedures for specific underwater repairs, not enough controlled experimental work was done to establish the following essential parameters:

- * Maximum allowable time between start of the primary weld beads and the start of the temper beads. (Each primary bead that ties into crack susceptible base metal is tempered before another primary bead is deposited.) Lengths of primary beads do not exceed that which can be deposited with one electrode).
- * Maximum acceptable distance between the toes of temper beads and primary beads.
- * Optimum temper bead heat input.

TEST PROGRAM

During establishment of the aforementioned parameters, test welds will be made at -33' on carbon steel plate that has been test welded to insure it's crack susceptibility. (ASTM A537 Cl.1, C.20, CE.462).

For determining the maximum allowable time between start of the primary bead and start of the temper bead, the matrix for each test specimen will be:

* Deposit a 2" long primary bead-on-plate across a 5/8" x 2" x 12" crack susceptible steel plate.

- * Deposit a temper bead over the primary bead. For the first weldment, the time interval between the start of the primary bead and start of the temper bead will be thirty seconds. For each of six weldments, the interval between primary beads and temper beads will be increased in thirty second increments, up to 180 seconds.
- * Each specimen will be examined in accordance with the AWS D3.6 procedure for bridge bend tests except that bends will be 4T instead of 20°. If the bead on plate face bends do not reveal cracking, specimens will be polished, etched, and examined at 100X magnification. (An additional weld will be made with no temper bead).

For determining the maximum acceptable distance from the toe of temper beads to the toe of primary beads, previously determined acceptable time interval will be used to make 5/8" groove welds on crack susceptible plate at -33'. Four welds will be made with toe-to-toe distances being 1/16", 3/32", 1/8" and 3/16". Testing of each weldment will include four macros examined at 100X, four hardness surveys and five charpy V-notch HAZ impact tests.

After determining the maximum time interval and toe-to-toe distance, 5/8" groove welds will be made to evaluate the effectiveness of the MTB wet welding technique in reducing hardness and increasing notch toughness in the heat affected zone. Two welds will be made at -33' on material that, while not susceptible to HAZ cracking (<.40 CE), will be subject to unacceptable HAZ hardness and notch toughness at 28°F.

One weld will be made using the MTB technique and the other will be made using conventional wet welding procedures. Examination of the welds will include four macros with hardness surveys and five charpy V-notch HAZ tests.

If the use of proper time intervals and toe-to-toe distances does not result in hardness and impact properties that are comparable to above water welds, additional welds will be made to determine optimum heat input. Three 5/8" groove welds will be made on crack susceptible material at -33'. Temper bead heat input will be progressively increased through changes in welding current, rate of travel and pulse arc parameters. Testing of each weldment will include four macros with hardness surveys and five charpy v-notch HAZ impacts at 28° F.

CONFIRMATION WELDS

To complete this part of the wet welding developmental program, and to provide a base for work at deeper depths, all position 3/4" groove welds will be made on crack susceptible material at -33' and examined in accordance with the requirements of AWS¹ D3.6 for type A (dry) welds with the added requirement that weldments shall be aged ≥ 72 hours at ambient temperature before examination. Ageing at 200°-220° F. as permitted by AWS D3.6 will not be done on any Phase I weldments. Five welds will be made; one each in the flat, horizontal and overhead positions and two in the vertical position. Orientation of the groove in the heat affected zone impact specimens from one of the vertical weldments will be as shown in AWS D3.6. Impact specimens from the other vertical weldment will be prepared for testing with the groove parallel to the heat affected zone.

⁽¹⁾ AWS D3.6-89 Specification of Underwater Welding defines Type B welds as wet welds and Type A (also Type O) as dry welds. In the pending edition of AWS D3.6-93, underwater welds are categorized by Class rather than Type and are not defined as wet or dry. The requirements for qualifying A welds and B welds are unchanged, see Exhibit A for comparison of test requirements.

MULTIPLE TEMPER BEAD WET WELDING TECHNIQUE

TEST MATRICES

MATRIX NUMBER	WELD TYPE	TEMPER BEAD INTERVAL (SECONDS)	TOE TO TOE DISTANCE (INCHES)	HEAT INPUT (KJ/mm)	4T BENDS OR MACRO ETCH @ 100X	HARDNESS SURVEY HV 10	CHARPY V-NOTCH @ 28*F
1	BEAD ON PLATE	вт ои			×		
1	BEAD ON PLATE	30 🗥	1/16	LEVEL 1	×		
1	BEAD ON PLATE	60	1/16	LEVEL 1	×		
1	BEAD ON PLATE	90	1/16	LEVEL 1	x		
1	BEAD ON PLATE	120	1/16	LEVEL 1	×		
1	BEAD ON PLATE	150	1/16	LEVEL 1	X		
t	BEAD ON PLATE	180	1/16	LEVEL 1	X		
2	GROOVE	(1)	1/16	LEVEL 1	MACRO ETCH	X	x
2	GROOVE	(1)	3/32	LEVEL 1	MACRO ETCH	X	X
2	GROOVE	(1)	1/8	LEVEL 1	MACRO ETCH	X	×
2	GROOVE	(1)	3/16	LEVEL 1	MACRO ETCH	X	x
3	(2) GROOVES	(4)	(4)	LEVEL 1	MACRO ETCH	X	x
3	(3) GROOVES			LEVEL 1	MACRO ETCH	X	x
4	(2) GROOVES	(4)	(4)	LEVEL 2	MACRO ETCH	X	x
4	(2) GROOVES	(4)	(4)	LEVEL 3	MACRO ETCH	x	x
4	(2) GROOVES	(4)	(4)	LEVEL 4	MACRO ETCH	×	×
5	(5) GROOVES	(6)	(6)	(6)	AWS D3.6A	x	×

- (1) Optimum time interval as determined by Matrix 1.
- (2) Groove weld with MTB.
- (3) Groove weld without MTB.
- (4) Optimum time interval and distance as determined by Matrices 1 and 2.
- (5) Confirmation welds.
- (6) Optimum MTB welding techniques.

PHASE I - PART 1 MULTIPLE TEMPER BEAD WET WELDING TECHNIQUE

MATRIX SUMMARY - PART 1

WELDMENTS

MATRIX NO.	WELDMENTS	TOTAL
MATRIX 1	7	7
MATRIX 2	4	4
MATRIX 3	2	2
MATRIX 4	3	3
MATRIX 5	5	5
TOTAL	21	21

POWER SOURCES AND AUXILIARY EQUIPMENT

BACKGROUND

Significant improvements have been made since the last comprehensive study was made of welding power sources and auxiliary equipment for use in underwater wet welding. During developmental work for specific projects, Global Divers has found that for the welding of stainless steel for underwater repairs at nuclear power plants, a variable pulse current output improves arc stability, weld metal transfer and weld bead geometry. And, during the welding of high strength steels with nickel electrodes, an inverter coupled with the pulse current device, provides the increased heat input that is required for this type of welding. These and other combinations of power sources and auxiliary equipment can be expected to produce improved results when used for wet welding with ferritic welding electrodes.

TEST PROGRAM

Combinations of power sources including diesel powered rotary generators, transformer/ rectifiers and sold-state inverters will be used with and without manually controlled variable pulsed current equipment and high frequency arc starter/stabilizers. A square wave variable/intermittent polarity power source will also be used. Experimental fillet welds (≥ 3/8") will be made at depths of 3' and 33'. Welds will include start/stops at mid-length of each weldment.

Examination of weldments will include visual, two macros and a fillet weld break. Weldments will be graded on weld bead geometry, amount of porosity, degree of root penetration and lack of undercut. In addition to the examinations of the weldments, the performance of the different combinations of power sources and auxiliary equipment will be judged on:

- General weldability and fitness for purpose.
- * Ease of arc initiation and maintenance.
- Arc stability.
- Welders control of weld bead configuration and rate of travel.

POWER SOURCES AND AUXILIARY EQUIPMENT VERTICAL FILLET WELDS AT MINUS THIRTY-THREE FEET

TEST MATRIX 1

POWER SOURCES	AUXILIARY EQUIPMENT	(1)ELECTRODE	POLARITY
GENERATOR	NONE	E 6013	STRAIGHT
GENERATOR	NONE	E 6013	REVERSE
GENERATOR	NONE	E 7014	STRAIGHT
GENERATOR	NONE	E 7014	REVERSE
TRANSFORMER/RECTIFIER	NONE	E 6013	STRAIGHT
TRANSFORMER/RECTIFIER	NONE	E 6013	REVERSE
TRANSFORMER/RECTIFIER	NONE	E 7014	STRAIGHT
TRANSFORMER/RECTIFIER	NONE	E 7014	REVERSE
TRANSFORMER/RECTIFIER	ARC PULSE (2 LEVEL)	E 6013	STRAIGHT
TRANSFORMER/RECTIFIER	ARC PULSE (2 LEVEL)	E 6013	REVERSE
TRANSFORMER/RECTIFIER	ARC PULSE (2 LEVEL)	E 7014	STRAIGHT
TRANSFORMER/RECTIFIER	ARC PULSE (2 LEVEL)	E 7014	REVERSE
INVERTER	NONE	E 6013	STRAIGHT
INVERTER	NONE	E 6013	REVERSE
INVERTER	NONE	E 7014	STRAIGHT
INVERTER	NONE	E 7014	REVERSE
INVERTER	ARC PULSE (2 LEVELS)	E 6013	STRAIGHT
INVERTER	ARC PULSE (2 LEVELS)	E 6013	REVERSE
INVERTER	ARC PULSE (2 LEVELS)	E 7014	STRAIGHT
INVERTER	ARC PULSE (2 LEVELS)	E 7014	REVERSE
INTERMITTENT POLARITY	NONE *	E 6013	
INTERMITTENT POLARITY	NONE	E 7014	

⁽¹⁾ The E 6013 electrode will be the one selected by global divers as the base electrode CSM will modify for use during PART 3. THE E 7014 electrode is a commercially available wet welding electrode.

POWER SOURCES AND AUXILIARY EQUIPMENT OVERHEAD FILLET WELDS AT MINUS THREE FEET

TEST MATRIX 2

BACKGROUND

BECAUSE OF THE 'DIFFICULTY IN MAKING WET WELDS IN THE OVERHEAD POSITION IN SHALLOW WATER (< 10'), THE TWO COMBINATIONS OF POWER SOURCES AND AUXILIARY EQUIPMENT THAT DELIVERS THE BEST RESULTS AT -33' WILL BE USED TO MAKE OVERHEAD FILLET WELDS AT -3'.

POWER SOURCES	AUXILIARY EQUIPMENT	ELECTRODE	POLARITY
NO. 1	NO. 1	E 6013	STRAIGHT
NO. 1	NO. 1	E 6013	REVERSE
NO. 1	NO. 1	E 7014	STRAIGHT
NO. 1	NO. 1	E 7014	REVERSE
NO. 2	NO. 2	E 6013	STRAIGHT
NO. 2	NO. 2	E 6013	REVERSE
NO. 2	NO. 2	E 7014	STRAIGHT
NO. 2	NO. 2	E 7014	REVERSE .

⁽¹⁾ THIS WET WELDING PHENOMENA IS ATTRIBUTED AN EXCESSIVE VOLUME OF GAS DUE TO REDUCED AMBIENT PRESSURE.

POWER SOURCES AND AUXILIARY EQUIPMENT

TEST MATRIX SUMMARY

SERIES	TOTAL				
MATRIX 1	30				
MATRIX 2	8				
TOTAL	38				

PHASE I - PART 3 ELECTRODE FORMULATIONS

BACKGROUND

Welding with shielded metal arc electrodes in underwater environment often presents problems related to water depth and to the arc environment. Loss of alloying elements in the weld pool, as well as weld properties deterioration, are observed with increasing depth. Welding electrodes that are adequately formulated must be used to adjust the final weld pool chemical composition. The high moisture environment also poses a significant problem because of hydrogen pickup from the surrounding water vapor which results in severe weld metal porosity and cracking. Both requirements, a balanced weld metal composition and controlled amounts of weld defects, demand more in-depth knowledge of electrode formulation for improved performance in underwater wet welding.

E6013 grade electrodes, common in structural welding of steels, are also used in underwater welding of low carbon medium strength steels. However, these electrodes are lean in alloying elements, thus incapable of producing weld metals of high strength and toughness. The elevated hydrogen content of the weldments produced by these electrodes is another concern. Improvements in electrode coating must be made to maximize weld strength and toughness, and to minimize weld metal hydrogen pickup. Non-hygroscopic flux ingredients and higher temperature baking schedules are some of the methods that will reduce the amount of moisture in the electrode coating. However, an optimal amount of moisture should be retained in the electrode coating to promote adequate penetration and shielding.

Underwater wet welds also experience considerably higher cooling rate than surface welds prepared using equivalent welding parameters. As a result, underwater welds generally contain large amounts of bainite and martensite, which are hard and brittle. Methods to increase the toughness of underwater wet welds with increased amounts of acicular ferrite must be developed. Multiple temper bead and plasma arc post- weld heat treatment are some of the techniques being investigated. However, development of

improved electrode formulations appears to be a more economical solution, and will be less dependent on welder skill. Tailoring the type and amount of alloying elements and flux ingredients added to the electrode coating will promote the formation of acicular ferrite and minimize hydrogen pickup in the weld metal.

OBJECTIVE

The objective of the proposed research program is to investigate the effects of several alloying elements and flux ingredients on electrode weldability, microstructure and properties of underwater wet welds. Experimental E6013 grade electrodes will be designed and manufactured at CSM. Underwater wet welds will be performed by Global Divers. Data on arc stability, chemical elements transfer, weld bead morphology, weld metal microstructure and mechanical properties will be gathered and evaluated. The results of this research will provide sound engineering and scientific basis for the design of shielded metal arc electrodes for underwater wet welding at various water depths.

PROGRAM

The proposed program consists of first identifying a commercial E6013 grade electrode as the base electrode for modification. (Global Divers will identify and provide the base electrode to CSM.) The major flux ingredients of the coating of this commercial electrode will be used as the primary composition of the experimental rods. The alloying elements currently under consideration are manganese (1.0, 1.5 and 2.0 weight percent) and nickel (.5, 1.0, 1.5 and 2.0 weight percent), known to improve significantly the strength and toughness of low carbon steel weldments. Titanium and boron will also be added. The optimal range of titanium and boron for acicular ferrite formation, determined previously as 200 ppm and 20 ppm, respectively, will be used in the coating composition in the experimental electrodes. In terms of flux ingredients, the major ones under consideration are CaCO₃ and Li₂SiO₃. It is the intent of this program to determine an optimal addition of CaCO₃ for weld pool shielding, low hydrogen pickup in the weld metal, and smooth bead surface. Two levels of calcium carbonate will be tested. The amount of lithium silicate that will provide a non-hygroscopic and extrudable coating will also be investigated in this program.

A total of 24 batches of experimental E6013 grade electrodes will be formulated and manufactured at CSM. A minimum of 40 electrodes from each batch will be delivered to Global Divers for further processing and underwater wet welding. Multiple-pass beadin groove welds will be required. Each weld coupon must be large enough for the extraction of all weld metal mechanical testing specimens. Hardness and side bend tests will be performed on representative weldments of all experimental electrodes. Based on the results of the two tests, tensile and Charpy-V-notch tests will be done on selected specimens. Quantitative metallography of the weldments will be performed using light microscopy. The results will be used to relate porosity and microstructure to mechanical properties. Complete chemical composition of the welds including interstitial analysis will be determined to evaluate the effectiveness of the slag systems in weld pool protection and alloying element recovery.

WORK STATEMENT

- 1. Identify one commercial electrode as the base composition for electrode formulation.
- Formulate and manufacture 24 batches of experimental electrodes; forty electrodes minimum from each batch. (8 batches delivered during 2nd, 6th and 10th month of program.
- Characterize the macrostructure (bead morphology, surface condition, and internal defects) of the 24 sets of underwater wet welds produced.
- 4. Perform hardness tests on all 24 sets of underwater wet welds produced.
- 5. Perform side bend test on all 24 sets of underwater wet welds produced.
- 6. Perform all-weld-metal tensile and Charpy-V-notch tests on selected specimens; no less than four of the 24 sets will be tested.
- 7. Characterize quantitatively the microstructure of the underwater wet welds that have undergone mechanical testing.
- 8. Determine the chemical composition of all 24 sets of underwater wet welds produced.
- Develop a knowledge base of the effects of flux ingredients on electrode weldability and weld metal properties for future design of underwater wet welding electrode coatings.

- 10. Prepare semi-annual summary reports of project research activities.
- 11. Prepare yearly progress report of project research activities, and propose research plans phase II.
- 12. Formulate and manufacture welding electrodes for Part 4 welding procedures.

ELECTRODE FORMULATIONS

TEST MATRICES

BASE ELECTRODE WELDMENTS

Based on results of previous developmental work by Global Divers, the number of potential base electrodes for modifications by CSM has been reduced to three. Final evaluation of these electrodes will include, for each electrode, a straight and a reverse polarity fillet weld to determine best polarity (least porosity) and a vertical groove weld. Eight side bend specimen from each weldment will be tested to compare ductility of the three weldments. The best of the three electrodes will be used to make an all-weld-metal tensile and weld metal charpy impact weldment for comparison to weldments made in Part 4.

ELECTRODE FORMULATION WELDMENTS

Twenty-four groove welds will be made. Weldments will be long enough for CSM to perform the examination described in the Part 3 Work Statement.

TEST MATRIX SUMMARY

Six fillet welds, one all-weld-metal tensile and impact weldment and twenty-seven groove welds will be made at -33.

PHASE I - PART 3 ELECTRODE FORMULATIONS

Matrix 1 - Identify base electrode (10 weldments)

Matrix 2, 3 & 4 - Make twenty-four 3/4" x 14-1/2" groove welds for CSM evaluation.

TEST MATRIX SUMMARY

SERIES	TOTAL
MATRIX 1	10
MATRIX 2	8
MĀTRIX 3	8
MATRIX 4	8
TOTAL	34

PHASE I - PART 4 WELDING PROCEDURES

BACKGROUND

Objective of the final part of Phase I will be to determine to what degree the state of the art of underwater wet welding has been advanced by the developmental program. This will be done by making welds with the best combination of experimental electrode, optimum multiple temper bead technique and power source/auxiliary equipment.

WELDING PROCEDURES

All position groove and fillet welds will be made at -3' and -33' and examined in accordance with the requirements of AWS D3.6 for Type A (Dry welds).

For qualification of all position Type A fillet welding procedures, AWS D3.6 requires a fillet weld in each position, one fillet weld shear/tension weldment and one all-weld-metal tensile/impact weldment. (Six weldments) examinations specified for the fillet welds are visual, two macros, one hardness survey and a fillet weld break. The all-weld-metal tension/impact weldments, and examination requirements are included with information reference the welds that will be made from -3' to -165'.

For qualification of all position Type A groove welding procedures, AWS D3.6 requires a groove weld in each position and one all-weld-metal tension/impact weldment. Examinations of the groove weldments will include visual, radiographic, two macros with hardness surveys, two reduced section tensiles, four 2T side bends and five HAZ and five WM Charpy impact tests at 28° F. The all-weld-metal tensile/impact weldment is included in the following group of weldments.

All-weld-metal tensile and impact weldments will be made at depths of 3', 33', 66', 99', and 165'. AWS D3.6 Type A examinations will include one all-weld-metal tensile test and, five weld metal charpy V-notch impact tests at 28° F.

Base metal for all weldments will be test-proven crack susceptible carbon steel. (ASTM A537 Cl .1, C .20, CE .462).

Welding procedure specifications will include, as developed during Parts 1, 2, and 3, the optimum multiple temper bead wet welding procedure, the preferred combination of welding power source/ auxiliary equipment and the best welding electrode from CSM

TEST MATRIX

- Matrix 1 Qualification of all position fillet welds at -3' and -33' (11) 10 weldments).
- Matrix 2 Qualification of all position groove welds at -3' and -33' (1) 8 weldments).
- Matrix 3 Make all-weld-metal tensil and charpy v-notch impact weldments at depths of 3', 33', 66', 99' and 165'.

MATRIX SUMMARY - PART 4

MATRIX NO.	WELDMENTS
MATRIX 1	10
MATRIX 2	8
MATRIX 3	5
TOTAL	23

⁽¹⁾ All weld-metal tensile/impact weldments for Matrices 1 and 2 are included in Matrix 3.

UNDERWATER WELDING DEVELOPMENT PROGRAM PHASE I PART 4 TESTING MATRIX

Fillet Weld Break																	7	-	-				
Charpy Impact WWHAZ @ +28F				- 2 HAZ		c ww.	***************************************		***************************************	***************************************	***************************************	***************************************	**************************************	5 H AZ		WM.g	***************************************				esterethant — especieles contact manufactures esteret	6 WM**	6 WM:
Vickers Hardness (10 kg)			*			***************************************											***************************************		*	•			
Chemistry and Micro Structuro Exam (% PF, AF & FS)			***************************************			**************************************	***************************************		erande en		**************************************		- AND THE RESERVENCE OF THE PROPERTY OF THE PR	AND THE RESEARCH AND THE PERSON OF THE PERSO	***************************************	***************************************		AND THE RESERVE OF THE PROPERTY OF THE PROPERT			***************************************	*	**************************************
A correct Test						٠	,	,	,				-			-	,	·	,		+		-
Side Bends (6t to 2t - Progressive & Fixed Bend Radii)	4 + 4	4 + 4	4 + 4	A + A				Service in the service is a service in the service		AND THE RESERVE OF THE PROPERTY OF THE PROPERT	4 + 4	4 + 4	4 + 4	4 + 4	***************************************								
All Weld Metal Tension															•						•		
Fillet Weld Shear										*										-			
Reduced Section Tension			2										2										
Kab-co-cam	X	×	X	×							×	×	X	X							X	X	X
-acv-<	×	×	$\stackrel{\hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm}$	×		×	X	×	X		×	×	×	×		X	Х	X	×		X	Х	×
0.00 0€	g	26	30.	4G	33	Щ	2E	냋	4	3F	9	26	30.	46	36		2F	3E	4	쁄	33	38	g
Test Weld Joint Type	Groove	Groove	Groove	Стоохв	Groove	Fillet	Fillet	Fillet	Ellet	Fillet	Groove	Gгоохв	Groove	Groove	Groove	Ellet	Fillet	Fillet	Fillet	Fillet	Groove	Groove	Groove
Water Depth (Feet)	3	3	3	3	e	3	3	5	3	3	33	33	33	33	æ	33	33	33	33	33	99	88	165

• First Position
PF = Primary Ferrite Accoular Ferrite FS = Ferrite with Aligned & Non-aligned Second Phases 3. WM Charpy's will be tested at 28° F. Results of these tests will determine the test temperature for the other 3.

SWL

SOUTHWESTERN LABORATORIES

193013

222 Cavalcade Street P.O. Box 8769 Houston, Texas 77249 (713) 692-9151

Attention: Pat Hays American Alloy Steel Post Office Box 40469 Houston, Texas 77040

Report No: 30916 File No: 12-0432-00 Date: 02/12/93 P.O. No: 21398

Project: Chemical Analysis of Steel Alloy

PROJECT INFORMATION

Material:

Two - Plate coupons

Identification:

Sec Below

Date Received: Specifications:

February 10, 1993

N/A

-

Technician: Date of Test: H. Bui, G. Klein

Test Equipment:

Siemens SRS-200,

Leco IR-212 Carbon

Procedure:

ASTM E322, E1019

February 10 to February 12,

CHEMICAL COMPOSITION (WT. %)

Specimen <u>Identification</u>	<u>_C</u>	Mn	<u> </u>	<u>_S</u> _	<u>Si</u>	<u>Ni</u>	. <u>Cr</u>	Mo_	_Cu	V	Cb	CE
Photo 5817-115 Home R2957 Size 276 x	0,84	1.00	- 0,014	-0:018			0,48	0.06	0.10	0,04		
Sint 15										,		
Plate A46677 Heat 79006 Size 3/4" x	0.20	1.50	0.014	0.019	0.38	0.03	0.02	<0.01	0.03	<0.01	<0.01	462

Mfg: RAUTA

1" x 2" Slab 12

Note: The submitted material will be discarded after a period of thirty (30) days unless otherwise directed.

SOUTHWESTERN LABORATORIES

R. Frank Reviewed By Glarya. Klen

AINESTODISTUS TEST REPORT WERKSZEUGNIS RELEVE DE CONTROLE

10315 -09

ASME SA-20/ASTH A-20 Illesja Fra Chatas Benoste Artistes وعنايديدي بالأدينيسينيس ويهريونس كالربيديد كالاستحادي STEMCOR USA INC. HOUSTON 18,08,1991 EMPIRE STATE BUILDING Valentagan milek ka Mark of the Manusactiones Zon him thes Established Ordin too Heaterhood the Communicate but I sate manuals a China a many among among bear manualaring bear and array are in a programmer. Photographics marriags NY1496 17780 Simples also president branch LANGE QUERTY WEREHOST PROJECT Entered Add to section Propert Antiques Assess and annual ASME SA-537 CLI/ASTM A 537 CLI ASHE SA-20 PRESSURE VESSEL STEEL ACC. TO ASME SA-20 1989 SECTION 11 Southface more Carel Piet Schwerdering He Rod was curedon District constituting for the Charmonical Economics and a call the Co. State of the Co. Sta SI MN CU CR 001 9.53 79006 .19 .39 1.49 .016 .016 .035 .002 .005 .042 0.04 0.04 .002 . 45 002 78357 .43 .17 .41 1.50 .015 .009 .033 .002 .007 .012 0.02 0.03 .000 12.70 .17 .45 1.45 .021 .013 .035 .002 .007 .015 0.03 0.03 .001 002 12.70 78922 . 42 . 45 .19 .39 1.49 .016 .016 .035 .002 .005 .042 0.04 0.04 .002 003 12,70 79006 .17 .45 1.45 .021 .013 .035 .002 .007 .015 0.03 0.03 .001 004 15.88 78922 . 42 005 .19 .39 1.49 .016 .016 .035 .002 .005 .042 0.04 0.04 .002 19.05 79006 . 45 000 43 22.23 78370 . 10 .40 1.52 .017 .002 .012 . 220 0.03 007 25.40 78922 .42 .17 .45 1.45 .021 .013 .005 .002 .007 .015 0.03 0.03 .001 008 25.40 79006 .45 .19 .39 1.49 .016 .016 .035 .002 .005 .042 0.04 0.04 .002 28.58 79006 .45 .19 .39 1.49 .016 .016 .035 .002 .005 .042 0.04 0.04 .002 31.75 78516 .45 .19 .41 1.52 .016 .006 .032 .001 .009 .008 0.02 0.03 .000 31.75 79057 .44 .18 .39 1.53 .019 .012 .038 .001 .009 .010 0.02 0.03 .000 009 010 011 N 920C,T=1.1(MIN)XTHICKN(MM) CEKV=C+MN/6+(CR+MO)/5+(NI+CU)/15 Sulphus, a sea nou Casa tosa Rio Schmidge Prid his Coulde, assar for Surjections forest tone teskomken met Special sews Scring variousla Exxes Spilcraus No Neman² REII 001 79006 31 111 -62 047 052 049 N II 408 572 34 049 002 78357 53 N 11 388 561 42 111 -62 042 028 019 0.30 T.S. = 82,200 002 78922 42 N 11 373 542 43 111 -62 046 044 109 066 y.s.=55,300 003 79006 22 N '11 385 566 39 111 -62 028 056 052 045 004 78922 43 N 11 355 535 41 111 -62 043 075 035 051 004 78922 59 N 11 360 533 44 111 -62 055 044 050 050 Charpy Test 005 79006 12 N 11 381 567 40 111 -62 035 043 040 039 000 78370 23 384 327 **43** 1. 26 FI/Lbs. 111 -82 082 039 050 77 77 7.7 007 78922 41 N 11 369 529 48 111 -62 107 066 052 075 2.32 Ft/Lbs. 008 79006 21 N 11 378 554 48 111 -62 059 059 041 053 009 79006 11 N 11 386 556 47 111 -60 067 044 059 3.30 Ft/Lbs. 057 010 78516 23 N 11 383 557 52 111 -60 133 083 125 114

K2: 11=TOP, TRANSV.

011 79057 21

K3: 111*CH-V/ISO-V(J),10X10,TOP,LONGIT.

N 11

TEST REPORT APPROVED DATE AMERICAN ALLOY STEEL BY QUALITY ASSURANCE DEPT

111 -60 041 041 045 042

Aug. = 29 Ft/465

Times almosticultures on times constitutore pa on priored dynamical priores and priores an RAUTARUUKKI OY

349 536 56

23.09.91 MR

Nazhou terditabiles Rashou Saud Worts Stabherath Radhe Acidem de Rashe Destrocases Osciety Control Occalitates occasion Same secon Consideration (Constitutes occasion and Constitutes occasion and

or Pum (887) 301 4 Europhone 358 87 301

wateron in the same

Lucional Comments

Derson Lengths windo and take the EPF orside and to their Eletericity gains; yet deserting course yet medically and some to the continuous and some the continuous and the c

Certified a true copy of the priginal, retained in our file. AMERICAN ALLOY STEEL, INC.

PLATE AMERICAN ALLOY DONOI L * AN 166 LEIKOVE LEILE COPY

RAUTARUUKKI OY VASTAANOTTOTODISTUS INSPECTION CEHTIFICATE ABNARMEPRUFZEUGN:S CERTIFICAT DE RECEPTION

PAAHEN TERÄSTEHDAS SF-47 100 HANE PAA 1967, 301 Tomphone 358 82 301 ASME SA-DOJASTM A-20 10315 -09 BRAADA PORCEIA SERRICH CHEEFFERENCERS NACES AND FOR THE CONCENSE OF FRANCE AND CONTRACTOR STREAM FANGE Processor and Evans Evangery Color STEMOOR USA INC. HOUSTON 18.08.91 NEW YORK, NY 10118 USA USA

HOMENTOUS MA LA EAUX HER ER FERMAGENALICONE

Effects (A. or Service Service

NY 1496

STAR SKOGANGER TOTAL DELIVERY

Bits no world Mindle Wal, as a proof SCHERBER, benefic 1990 a resembly many Charley Changers;

March this cost forming Changers;

March this cost forming Changers;

March this cost forming Changers;

Schenberger in the partie for the platfold for SA 537 CE.1 MT ETV

Extension for the Marchald for Confere files talk for the cost of the platfold for the forming for the Marchald for Confere for North for the Confere for the Conference for the Conferen

HEAVY PLATES

Eutocaman Indocument ASME SA-20

ASME SA-537 CLI/ASTM A 537 CLI

PRESSURE VESSEL STEEL ACC. TO ASME SA-20 1989 SECTION 11

File and the second sec

1	Marse
- 1	Felia i
1	Ext tues
ı	جدت در اند

_		
1	* g-é	- 1
1	Fee	1
1	Steel	1
1	Courses	

IMPACT TEST CHARPY-V LONG PER ASME SA 20.

MORNAGIZED	STEEL	PLATES

STEMOUR USA INC./FINLAND					
001 9.53 X 3048 X 12192	3/8X12UX450 17780	2	5560	79006- 31	31
STEMCOR USA INC./FINLAND		~	3,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J.
002 :2.70 X 2438 X 12192	1/2X96X480 17780	ı	2964	78357- 53	5.3
007 12.76 X 2438 X 12192	•	1	2964		
STENCOR USA INC./FINLAND		-	2,00	14721 14	74
003 12.70 X 3048 X 12192	1/2X120X480 12780	2	7410	79006- 22	22
STEMOOR USA INC./FINLAND		-		7,000 22	* *-
004 15.88 X 3048 X 12192	5/8X120X4E0 17780	1	4632	78922- 43	43
004 15.88 X 3048 X 12192	.,	1	4632	78922- 59	
STEMOR USA INC./FINLAND		-	1031	20724 33	,,
005 19.05 X 2438 X 12192	3/4X96X480 17780	2	8892	79006- 12	12
STEROR USA ISC./FIRLAND				······································	
006 22.23 X 3048 X 32192	7/HX120X450 17780	1	6485	78370- 23	23
STEMCOR USA INC./FINLAND					
007 25.40 X 2438 X 12192	1X96X480 17760	1	5928	78922- 41	41
STEMCOR USA INC./FINLAND					
008 25.40 X 3048 X 12192	1X129X480 17780	ì	7410	79006- 21	21
STEMCOR USA INC./FINLAND	*				
009 28.58 X 3048 X 12192	1-1/8x170x480 17780	1	8337	79006- 11	11
STEMCOR USA INC./FINLAND					
010 31.75 X 2438 X 12192	1-1/4x96x4EC 17780	1	7410	78516- 23	23
STEMCOR USA INC./FINLAND					
011 31.75 X 3048 X 12192	1-1/4X120X450 17780	ì	9262	79057- 21	21
STEMOOR USA INC./FINLAND					
012 38.10 X 2438 X 12192	1-1/2X96X480 17780	1	8891	79057- 22	22
STEMCOR USA INC./FINLAND					
013 44.45 X 3048 X 6401	1-3/4X120X252 17780	1	6808	78901- 49	49

24,09,91

RAUTARUUKKI OY

Resident State Company Words Statistical Resident Statistical Resident Statistical Controlled Statistical Statistical Statistical PENTRI KASKENTOLA STATISTICAL STATISTICAL STATISTICS STAT

Certified a true copy of the original, retained in our file. AMERICAN ALLOY STEEL, INC.

TEST REPORT APPROVED DATE 10-8-9

DESCRIPTION .

AMERICAN ALLOY STEEL BY QUALITY ASSURANCE DEPT.

CUSTOMER __ CUST. P. O. # <u>P.Q. 40' 5 50 7</u> AA.S. S/O# 99557 DATE MAILED _ 3/2/93

Mark D.D.R

PIATE ボ 月ケ DO NOT REMOVE

APPENDIX III

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E. STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANA	LYSIS
Date:6-28-93 P.O. No	GD406244
Company: Global Divers & Contractors, Inc.	
Test: AWS D3.6-93 Bridge Bend Test for C	
Test Performed on: Weld Sample 3/4" X 8"Lg.	(No T.B.)
Welders Name: Darryl Phillips	
This Certificate may not be altered, deleted from, published and/o	r used except in full.
20° BRIDGE BEND TEST	
SAMPLE TYPE & NUMBER	RESULTS
F1	Failed in HAZ
F2	Failed in HAZ
F3	Failed in HAZ
F4	Failed in HAZ
EQUIPMENT UTILIZED FOR TEST	1
Type:Guided Bend Tester	
Manufacturer: CRC	
Certified By: /m / Date Tim J. Broussard SRC Engineers, Inc.	e: <u>6-28-93</u>
Reviewed By: Devel Della Date	a

GLOBAL5.BND

Sheet <u>1</u> of <u>2</u> W/O No. <u>ED-011-93</u>

MATERIALS JOINING WORK REPORT Part 1 Confirm A537 Cl.1 Crack Sensitivity

Location	GLOBAL D	VERS - PORT	OF IBERIA	Contr	act No9	11-M-4346
						Gradein. Diain
	33'		Polarity <u>CC/D</u>			-GROOVE Position 3G
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
ROOT	1 & 2	1/8"	155 - 160	33 - 34	5.8	PPS - 125
FILL	3 - 35	1/8"	155 - 160	33 - 34	6.4	PW - 50%
CAP	36 - 41	1/8"	155 - 160	33 - 34	9.1	Background - 30%
						Weld Time - 55 Min.
						No Temper Beads Were Used.
			-			
Maldon	Dom J D C	% (#\$ `				
vveider.	Darryl R. F	'/Illiigs	······································			Date: <u>6-25-93</u>
Welding Joi	nt Sketch:				Welding Techr	niques:
					Stri	nger Beads with all passes downhill.
	733.	30-	3/16.]	1.10.		

Sheet 2 of 2 W/O No. <u>ED-011-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: AWS D3.6 20° Bridge Bend Test for Class C Welds

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1		X			FAILED IN HAZ
2		×			FAILED IN HAZ
3		X			FAILED IN HAZ
4		X			FAILED IN HAZ

Chemistry: A537 Cl.1

1	CE	С	Min	P	S	SI	NI	Сг	Mo	Cu	٧	СЪ	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Purpose of Test: Co	onfirm crack s	susceptibility	of A537	CI.1	(C.20,	CE.462)	Program	material.
---------------------	----------------	----------------	---------	------	--------	---------	---------	-----------

Remarks & Evaluation: Four of four bridge bend specimens failed in HAZ at approx. 10°.

Four of four macros had HAZ cracks when examined at 50X magnification.

|--|

APPENDIX IV

SRC ENG	INEERS,	INC.			
837-3810, 31106	* LAPAYETTE,	LA 70593-1106	* FAX	(318)	837-5710
COMPANY NAME:	Global Diver				And the second s
	New IDella,	na.			
TEST PERFORMED:	Macro Etch o	n weld sample	(No T.1	3.)	
		44 Weld Sample-			# 2) 3G
					•

MACRO TEST RESULTS:

HAZ Examined at 5X, 50X, & 100X Magnification. Evidence of Hydrogen Cracking were found near the cap of the weld. Cracks were visible at 50X.

Specification: In accordance with AWS D3.6

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer:	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: Time Recent Date: 7-1-93

Reviewed By: South (Vollage Date: 07-01-83

GLOBAL5.MAC

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-110	
837-3810, 31106 * LAFAYETTE, LA 70593-110)6 * FAX (318) 837-5710
COMPANY NAME: Global Divers	
New Iberia, La.	
TEST PERFORMED: Macro Etch on weld sample	(No T.B.)
P.O. #GD406244 Weld Sampl	Le- 3/4" x 8"(#3) 3G
Specification: In accordance with AWS I	3.6
MACRO TEST RESULT	·C •
	<u></u>
HAZ Examined at 5X, 50X, & 100X Magnif	Eication.
Evidence of Hydrogen Cracking were fou	ind near
svidence of hydrogen cracking were for	nid near
the cap of the weld. Cracks were visi	ible at
•	
50x.	
FOULTHWAM UNIT THEN DOD	mnom
EQUIPMENT UTILIZED FOR	CTEST
Type: Metallograph	
Manufacturer: Olympus	······································
Serial No.: 502796	
Serial No.:	
Last Servicing: December, 1992	
SRC Job No. 92-352	
Certified By: Im Bernel D	Date: 7-1-93
- AM	
Reviewed By: Dept a Cello D	Date: <u>07-01-93</u>

GLOBAL5.MAC

HAZ Examined at 5X, 50X, & 100X Magnification. Evidence of Hydrogen Cracking were found near the cap of the weld. Cracks were visible at 50X.

EQUIPMENT UTILIZED FOR TEST

Type: __Metallograph

Manufacturer: __Olympus

Serial No.: __502796

Last Servicing: __December, 1992

SRC Job No. 92-352

Certified By: _____ Date: 7-1-93

Reviewed By: Date: 07-01-93

GLOBAL5.MAC

MULTIPLE TEMPER BEAD WET WELDING TECHNIQUE (PHASE I - PART 1)

The multiple temper bead (MTB) wet welding technique was developed to prevent hydrogen-induced underbead cracking in the hardened heat affected zones of crack-susceptible high strength steels. The carbon equivalent of these steels generally exceeds 0.40 wt. pct. The procedure has been qualified and used to repair ship hulls and offshore structures of materials that have demonstrated crack susceptibility (typically with carbon equivalents ranging from 0.416 to 0.455 wt. pct.). Also with adequate temper bead heat input, the technique is capable of significantly reducing HAZ hardness and improving Charpy V-notch impact properties.

To further strengthen the position of multiple temper bead technique as a viable engineering solution to welding high carbon equivalent steels in an underwater environment, several essential process parameters must be better determined and demonstrated in controlled experimental conditions. Global Divers identified the following three parameters as the most critical ones that must be examined in Phase I Part 1 of the experimental program:

- Maximum allowable time between start of the primary weld beads that tie-in to the base metal and start of the temper beads.
- 2. Maximum acceptable distance between the toes of temper beads and primary beads.
- 3. Optimum temper bead heat input.

Maximum Allowable Time Between Primary and Temper Beads ($t_{p/t}$)

The maximum acceptable time interval between the deposition of primary weld beads on crack susceptible base metal, and the deposition of temper beads, is related to the time for hydrogen-induced cracks to develop in wet weldments. Since the development of cracks can also be related to microstructure, the maximum time allowable between the deposition of the primary and temper beads must also be related to the kinetics of austenite decomposition to form martensite. It is desirable to have a long time interval between deposition of primary and temper beads because of better options for sequence and timing of weld bead deposition.

Initial efforts to determine the maximum acceptable time between the deposition of the primary weld beads on the A537 base metal, and deposition of temper beads over the primary beads consisted of laying down single primary beads-on-plate followed by single temper beads deposited at different time intervals. This approach was, however, unsuccessful and the welds

ijolfinalrpt.995 3 - 1

exhibited gross HAZ cracking. After a 4T bend, the entire weld metal "slug" separated from the base metal as shown in Figure 3. The negative result can be attributed to the difficulty in travel speed control while attempting to maintain an adequate toe-to-toe distance between the two beads.

Weld deposition scheme

The welder's control over travel speed and heat input was restored by the following procedure:

- a) On each of the time interval test plates, an 8" long weld bead was first deposited above water.
- b) With test plates at -33', the wet primary weld bead was deposited parallel to, and slightly overlapping the dry weld bead.
- c) With the wider area of weld metal, the welder had complete control over travel speed, bead morphology (size and geometry) and heat input as he deposited the temper beads over the wet primary beads.

With the small degree of overlapping, the dry welds did not appear to affect either the deposition behavior of the underwater primary and temper beads, or the performance of the temper beads. The presence of these prewelds did not alter the significance of the time interval determined. However, the dilution of the wet primary bead had changed as a result of the weld bead deposited above water. Figure 4 shows the cross section of a weld specimen, illustrating the overlapping weld deposition sequence according to the scheme described.

For time intervals, t_{ph} , ranging between 30 and 210 seconds, two 10" long plates were laid out and welded as shown in Figure 5. A photograph of experimental welds to determine the t_{ph} is shown in Figure 6. The combination of different weld sequences (directions of welding) with start delays allowed for the preparation of specimens that experienced different times between the primary and temper bead. A total of eleven time intervals were obtained from the two sets of welds. Eleven cross sections (at 15 to 30 second intervals) corresponding to the eleven time intervals described above were removed from the two weldments and examined for hydrogen induced underbead cracking in the HAZ.

Instead of the 5X magnification specified by AWS D3.6, 100X magnification was used to evaluate the eleven specimens for underbead cracking. The higher magnification was to ensure

jip/finalrpt.995 3 - 2

a more rigorous testing procedure than that called for in the AWS D3.6 specification. Six specimens were found to be crack free. These welds correspond to the ones on which temper beads were deposited at 30, 45, 105, 120, 135, and 195 second intervals. The Material Joining Work Report for the 30 to 210 second welds, and the test results of the 30 seconds Δt_{pt} weld are shown on the following pages. The test reports of the other sound welds are included in Appendix V.

The remaining five specimens (corresponding to $t_{p/t}$ of 60, 90, 150, 180, and 210 seconds) exhibited some fine cracking which required more detailed examination. The test report of the 60 seconds $t_{p/t}$ weld is shown in the following pages. The test reports of the other four weld specimens with cracks are included in Appendix VI. Descriptions of cracks observed in these welds are given in Table III.

Upon recommendation of SRC Engineers, Inc., CSM was requested to examine these five weld specimens. Microscopic examination using magnifications as high as 1000X was performed to observe the cracks. Some of the lower magnification (100X) micrographs, Figures 7 to 11, are included in this report. Figure 7 shows several cracks observed in the specimen of 60 seconds $t_{p/t}$. The interconnected cracks are oriented along the rolling direction, which indicates a relationship to base metal inclusions. Some inclusions are known to act as hydrogen traps. However, the jagged appearance of the crack also reminds of hydrogen cracking.

Figure 8-A shows a photograph of the cross sections of the specimen of 90 seconds $t_{\rm ph}$, indicating the presence of hydrogen cracks. The cracks, located in the coarse grained heat affected zone of this weld, are clearly visible in Figure 9. However, the crack appears to have occurred because of the location of the crater. With the extinction of the arc, the lower arc energy and the collapse of the shielding gas column contribute to a large influx of hydrogen. This explanation seems to be reasonable since the opposite side of the sample did not show any evidence of cracking, Figure 8-B.

jip/finalrpt.995 3 - 3

Sheet __1_ of _2 W/O No. _ED-007X-93

MATERIALS JOINING WORK REPORT Part 1 MTB Time Intervals, 30 thru 210 Sec's

Location	GLOBAL [DIVERS - POF	T OF IBERIA	Contra	act No.	91-M-4346
Mat'l (1) Ht./Slab No Thick	A 537 76006-12 5/8"	Grad	e <u>CI 1</u>	in.	Mat'l (2) Ht./Slab No. Thick	Grade in. Dia in
						Proprietary/Hobart Ctry
Process	SMAW	Current	/Polarity <u>CC/D</u>	CEP/PULSE	Joint Type <u>Bl</u>	EAD-ON-PLATE Position 3G
Water Depth	33'	Dry	W	/et <u>X</u>		
Welding Varia	bles:					
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
ВОР	1	1/8*	155	30	8.0	Dry weld (E 7018)
ВОР	2	1/8*	155	30	7.8	Wet Primary Bead (E 6013)
Temper	3	1/8"	155 - 160	28 - 30	6.5	Wet Temper Bead (E 6013)
*						
Welder:	Darryl R.	Phillips				Date: <u>6-21-93</u>
Welding Join	t Sketch:				Welding Techr	niques:
	b c	a		bead 210 s	and start of te	nhill. Times between start of primary imper beads varied from 30 sec's to imately 30 sec intervals. (See sketch
a - Di	ry Weld Bea c - Wet	ad b - We Temper Bea	t Primary B	ead		1100 months

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-007X-93</u>

Tension Tests:	(Reduced	Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT	ULTIMATE S.	YELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry: A-537 Cl.1

	CE	C	Mn	Р	S	SI	NI	Cr	Mo	Cu	٧	Съ	Nb	Αl
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01	M-100-00	

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

I WILL OF I COL	Pun	pose	of	T	est.
-----------------	-----	------	----	---	------

Determine maximum acceptable time between start of primary weld beads and start of

temper beads. (How long does it take for hydrogen induced underbead cracking to occur

in the HAZ of wet welds)?

Remarks & Evaluation:

At \leq 100X, no cracks were detected when temper beads were deposited at 30, 45, 105,

120, 135, and 195 sec's intervals. See attached report reference anomalies detected in

the 60, 90, 150, 180 and 210 second specimens.

		Often Un				
Bv:	C.E. Grubbs	Of De Ma	Date:	6-21-93	Rev:	······································

SRC ENGI	NEERS INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
•	New Iberia, La.
TEST PERFORMED:	Macro Etch on weld sample
	P.O. #GD106064 Underwater Weld Sample-30 sec.
Coogification:	In accordance with AWS D3.6
Specification.	In accordance wrene and boso
	MACRO TEST RESULTS:
**** **********************************	-+ EV FOV c 100V Warmifigation
HAZ EXAMINEO	at 5X, 50X, & 100X Magnification.
No evidence	of any Hydrogen Cracking were found.
	EQUIPMENT UTILIZED FOR TEST
Type: Meta	llograph
Manufacturer	: Olympus
Serial No.:	502796
Last Servici	ng: <u>December, 1992</u>
SRC Job No	92-352
Certified By:	Time Date: 6-24.93
	
	- 11
Reviewed By:	50 pt 1 Date: 6-24-83

GLOBAL.MAC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED:

Macro Etch on weld sample

P.O. #GD106064 Underwater Weld Sample-60 sec.

MACRO TEST RESULTS:

HAZ Examined at 5X, 50X, & 100X Magnification.
Indications of Unidentified Cracks were found.
Further study of these cracks by the Colorado
School of Mines is advised.

Specification: <u>In accordance with AWS D3.6</u>

	EQUIPMENT UTI	LIZED FOR	TEST
Type: <u>Metallo</u>	ıraph		
Manufacturer: _	Olympus		
Serial No.:	502796		
Last Servicing:	December,	1992	

SRC Job No. 92-352

Certified By: Tim Parent Date: 6-24-9

Reviewed By: 50 Th (Villa Date: 6-24-93

GLOBAL .MAC

HAZ Crack in Bend Specimen Due to Lack of Temper Bead Heat Input in Primary Bead on A537 Cl.1 (CE .462) Plate

Cross Section of Weld Beads on Plate

A - Weld Bead Deposited Above Water B - Wet Primary Weld Bead C-Wet Temper Bead

LATE LAYOUTS FOR TIME INTERVALS BETWEEN PRIMARY BEADS AND TEMPER BEADS (BASED ON 8" LONG WELD BEAD PER MINUTE)

Primary Bead Right to Left Temper Bead Right to Left

PLATE #2 Primary Bead Right to Left

Temper Bead Left to Right

Primary Bead - Number of Seconds.

Temper Bead - Number of Seconds, After 30 Seconds Start Delay.

* - Start/Stop Beads.

** - 120 Second Delay.

First Experimental Weldments to Determine Maximum Acceptable Time Interval Between Start of Primary Weld Bed and Temper Bead

AWS 2" x 12" Bridge Bend Specimen

Figure 2. A photomicrograph of the cracks noted in left weld pass HAZ of macrosection 60. (100X, Nital Etch)

Cross Section of 90 Second Time Interval Weldment

Hydrogen Crack in HAZ of Primary Weld Bead Due to Concave Temper Bead (Lack of Heat Input)

Reverse Side of 3/8" Cross Section Had Full Temper Bead and No Cracks

Figure 3. A photomicrograph of the cracks noted in left weld pass HAZ of macrosection 90. (100X, Nital Etch)

Table III. Description of the Cracks observed in the Multiple Temper Bead Weldments

Time between Primary and Temper beads (t _{p/l})	Description of Crack (Interpretation by Scientific Testing Laboratories, Inc.)
60 seconds	Several small cracks in the HAZ of the left weld pass (wet primary weld bead). Identification of the type of cracking was not possible at 100X magnification. The cracks are aligned with elongated MnS inclusions. Such type of inclusions are known as excellent sites for hydrogen entrapment.
90 seconds	Micro-examination (100X magnification) showed typical hydrogen induced cracking in the HAZ of the left weld pass (wet primary pass). [Later visual examination of the specimen revealed excessive concavity in the temper bead (weld crater) which resulted in inadequate heat input where the cracking occurred. Reverse side of 3/8" thick specimen was examined at 100X magnification and found to be without anomalies.]
150 seconds	Fine cracks in the HAZ of the right weld pass (Dry E7018 weld bead). Identification of type of cracks was not possible at 100X magnification.
180 seconds	A maze of small cracks in the HAZ of the right weld pass (Dry E7018 weld bead).
210 seconds	Dr. S. Ibarra (Amoco Research) examined this specimen and detected no hydrogen induced cracking in the HAZ.

Figures 10 and 11 show multiple fine cracks located in the heat affected zones of the weld specimens of t_{ph} of 150 and 180 second. These cracks are intergranular, typical of hydrogen cracking. However, since these welds were deposited dry, these cracks are not related to the multiple temper bead procedure.

Based on examinations by SRC Engineers, CSM, and reexaminations by Scientific Testing Laboratories of the vertical groove welds made with the Program EX 7 electrodes on the ASTM A537 Class 1 steel plate, none of the typical hydrogen induced underbead cracking were

Photomicrograph of Cracks Noted in the Right (Dry) Weld Pass HAZ of Macro-section 150 Seconds Weldment. (100X, Nital Etch).

Photomicrograph of Cracks Noted in the Right (Dry) Weld Pass HAZ of Macro-section 180 Seconds Weldment. (100X, Nital Etch).

detected in the HAZ of the eleven weldments. With this information established for welds made with time between deposition of primary weld beads and start of temper beads ranging from 30 to 210 seconds (3.5 minutes), welds were made with the time between beads extending from four minutes to four hours with the following results when examined at 100X:

Results

- * Four minutes to ten minutes with thirty second intervals. No HAZ cracks.
- * Ten minutes to sixty minutes with ten minute intervals. No HAZ cracks.
- * One hour to two hours with thirty minute intervals. No HAZ cracks.
- * Two and one-half hours to four hours with thirty minute intervals. All specimens had typical HAZ hydrogen induced cracking.

Results of examinations of welds made with time between deposition of primary weld beads and temper beads varying from four minutes to four hours are reported in Appendix VII. <u>Supplemental Information</u> (Two Reports)

1. Subsequent to the completion of the scheduled program welds that were made to determine the maximum acceptable time between deposition of the primary weld beads and temper beads, the following supplemental welds were made possible by the assistance of Mr. Tom West.

At the time Mr. West was overseeing an underwater wet welding research project for the U.S. Navy which involved using nickel electrodes to weld crack susceptible ASTM A516 Grade 70 (CE .44 wt. pct.) normalized 3/4" steel plate. While making a weld with commercial ferritic electrodes to confirm the crack susceptibility of the material, the underwater welder saw typical hydrogen cracking in the HAZ of the base metal. Because this had not occurred when making any of the many welds Global Divers made on the A537 Class 1 (CE .462) material with the Program Ex 7 electrodes, Mr. West provided enough of the A516 Grade 70 plate for Global to make two vertical 3/4" groove welds with the Ex 7 electrodes. Both welds were made at -33 ft, one was made using the multiple temper bead wet welding technique and the other was made with no intentional use of temper beads. (The welds that developed cracks during welding and the two welds made by Global were made in south Louisiana in August, so water temperature was not a factor). While making the weld with no temper beads, the welder looked for, but did

jip finalipt.995

not see any cracks in the HAZ and no cracks were detected in the HAZ when the completed weld was subjected to magnetic particle examination. Four cross sections from each of the two welds were later examined by SRC Engineers at 100X and 400X magnification. Hydrogen cracks were detected in three of the four specimens taken from the weld made with no deliberate effort to use temper beads. (Some weld beads that tie-in to the base metal may be tempered regardless of the welding technique). The SRC test results are shown on one of the following pages.

- Listed below are examples of materials that, when being welded with other than Ex 7
 electrodes, developed HAZ hydrogen cracks before the welds were completed. (All
 weldments were restrained):
 - ASTM A516, Grade 70 (CE .44) "welder saw cracks as weld was being made".
 - * ASTM A516, Grade 70 (CE.37) "before capping the weld, welder saw cracking in the heat affected zone".
 - * DH 36 (CE .43) "HAZ cracks seen by welder after, or during, laying down third layer of weld beads".
 - * BS 4360 Grade 50 D (CE .416) "welder saw HAZ cracks while making a severely restrained 3/4" fillet weld".
 - * BS 4360 Grade 50 D (CE .416) "rusty cracks in HAZ of fractured surfaces of bend specimens indicated that cracks developed while the weldment was still underwater".

The importance of the test results of welds made with the Ex 7 electrodes on the A516 Grade 70 (CE .44) material, and the experiences of using other electrodes to weld the five other crack susceptible base metals, is discussed in the MTB Conclusions section of this report.

Maximum Acceptable Distance Between the Toes of Primary and Temper Beads

The effectiveness of the multiple temper bead technique is intimately related to the thermal profile that the temper bead imposes on the primary bead. Thus, the location of the temper bead with respect to the primary bead is a critical factor in this procedure. It is desirable to determine the significance of requiring an "exact" toe-to-toe distance between the primary and temper beads. If an exact toe-to-toe distance is not required, what is the maximum distance between the primary and temper beads without the risk of HAZ hydrogen cracking and

jip/finalrpt.995 3 - 19

mechanical properties deterioration in a crack susceptible base metal?

Four 5/8" groove welds were made on A537 Cl.1 steel plates in the vertical position. The toe- to-toe distances were 1/16", 3/32", 1/8", and 3/16". The time between start of primary weld beads and temper beads ranged from 90 to 120 seconds. Weld examinations included microscopic, four weld cross sections from each weldment were examined at 100X magnification, four hardness profiles from each weldment at Vickers 10 kg load, and five Charpy V-notch impact tests at 28° F. For statistical significance, the highest and lowest impact energy were discarded and the remaining three averaged for reporting as specified by AWS D3.6 for Class A welds. A Global Divers work report on the 1/16" toe-to-toe distance welds is included in the following pages. The other reports (for d_{p1} of 3/32", 1/8" and 3/16") are compiled in Appendix VIII.

Microscopic Examination

Microscopic inspection of the weld specimens did not detect any cracking, which demonstrates that even with a toe-to-toe distance of 3/16", there was enough temper bead heat input to prevent HAZ hydrogen cracking.

Vickers hardness measurements

Vickers 10 kg hardness surveys were made on four cross sections from each of the weldments. A schematic drawing of the cross section #1 of weld 1/16" $d_{p/t}$, has been included as Figure 12 to show the locations of the hardness readings. In general, a total of twenty eight hardness readings were made on each weld specimen: twelve in the weld metal, twelve in the heat affected zone, and four in the base metal. The average hardness readings are summarized in Table IV.

jip/finalrpt.995 3 - 20

MATERIALS JOINING WORK REPORT Part 1 MTB Toe-to-Toe Distance 1/16"

Sheet __1_ of _2 W/O No. _ED-007-93

Location	GLOBAL [DIVERS - POR	T OF IBERIA	Contr	act Nog	91 -M-4 346			
						Grade in. Dia i			
						-GROOVE (8") Position 3G			
Water Depth 33' Dry Wet X Welding Variables:									
RF&C	PASS	DIA.	AMPS	VOLTS	IPM.	REMARKS			
ROOT	1	1/8"	150 - 160	28 - 30	5.6	Temper beads were deposited on all			
ROOT	2	1/8*	150 - 160	28 - 30	6.3	beads that tied into the base metal.			
	AVG	1/8"	155	30	9.4	Toe-to-toe distances were 1/16".			
rill	AVG	1/8*	155	30	8.6	Number of passes -33. Electrodes			
CAP	AVG	1/8*	155	30	9.2	consumed -37. Welding time 54			
						minutes.			
Welder:	Darryl R. F	Phillips		***************************************		Date: _6-1-93			
Welding Join	t Sketch:				Welding Techn Stringer Bea				
	30.	3/8.	3/16.])					

Sheet 2 of 2 W/O No. ED-007-93

	Tension	Tests:	(Reduced	Section/All-Weld-Metal)	N/A
--	---------	--------	----------	-------------------------	-----

SPECIMEN	ORIENT	ULTIMATE S.	V		
		OLIMAIE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

ROOT	FACE	SIDE	RADIUS	RESULTS
			······································	
	ROOT	ROOT FACE	ROOT FACE SIDE	ROOT FACE SIDE RADIUS

Chemistry:

1	STR									ano .	- GU		СЬ	Nb	Al
- 1	LAB	.462	.20	1.50	.014	010	.38	.03	.02	.01	.03	.01			

Hardness (Vickers/Rockwell): Vickers 10 kg, combined test results on four macros.

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	187	189
HAZ (MAX)	395	434
HAZ (AVG)	259	256
WM (MAX)	240	210

Purpose	of	Test:
---------	----	-------

Determine maximum acceptable distance between toes of primary beads and toes of

temper beads.

Remarks & Evaluation:

See HAZ hardness tests, 6 each side on .5mm center, under toe of cap where maximum hardness can be expected. Charpy v-notch HAZ impacts at 28° F. averaged 72 ft. lbs.

with 70% shear. Base metal charpys averaged 86.7 ft. lbs. with 100% shear. No HAZ cracks at 100X.

By: C.E. Grubbs & Sulla D	Date:	6-1-93	Rev	/:
---------------------------	-------	--------	-----	----

ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: <u>Global Divers</u>

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

P.O. #GD106306 Underwater Weld Sample #1(1/16")

3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January</u> 18, 1993

SRC Job No. _

92-352

Certified By:

Date: 6-14-93

Reviewed By:

Date: 00-19-97

VICKERS. WLD

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u>Global Divers</u> <u>New Iberia, La.</u> TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD106306 Underwater Weld Sample #2(1/16") 3G - With T.B. Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 212 20+ 197 305 / 327 230 183 191 191 183 235 252 Note: HAZ Examined at 5X, 40X, & 100X Magnification EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Type: Manufacturer: Wilson Serial No.: <u>LR-997</u> Last Calibration: <u>January 18, 1993</u> SRC Job No. 92-352 Certified By:__ Date: 6-14-93

Reviewed By:

Date: _06 - 19

VICKERS.WLD

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u>Global</u> Divers New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD106306 Underwater Weld Sample #3(1/16") 3G - With T.B. Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 212 198 252 / 209 186 193 193 192 183 210 212 210 252 Note: HAZ Examined at 5X, 40X, & 100X Magnification EQUIPMENT UTILIZED FOR TEST Type: Tukon Model LR Microhardness Tester Manufacturer: Wilson Serial No.: <u>LR-997</u>

Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Certified By:_ Date: 6-14-93

Reviewed By: Segaral College Date: 06-4-93

VICKERS.WLD

Table IV. Hardness Data of the Experimental Welds in the d_{ph} Determination.

Toe-to-toe Distance d _{p/t}	Average Base Metal Hardness (HV _{10k})	Average Weld Metal Hardness (HV _{10k})	Average HAZ Hardness (HV _{10k})	Hardness Readings Greater than 325 (HV _{10k}) (1) (2)
1/16"	188	240	257	327, 344, 356 361, 395, 434
3/32"	178	260	244	369, 345
1/8"	174	212	266	340, 361
3/16"	169	286	258	332

- (1) AWS D3.6 specifies a maximum hardness of 325 HV_{10k} for Class A (dry) weldments.
- (2) Includes sixteen test sites (2 on each side of 4 specimens) per weldment at 0.5 mm centers under toe of cap pass on each side of weldments [Typically the hardest areas except one 1/16" weld (Fig 13)].

All base metal hardness readings were reasonably consistent throughout the specimens and averaged 178 HV_{10k}. Weld metal hardness averaged 250 HV_{10k} with a maximum reading of 260 HV_{10k}. HAZ hardness averaged 256 HV_{10k} with five of the initial 96 readings exceeding the 325 HV_{10k} maximum specified by AWS D3.6 for Class A (dry) welds. However, four of the five readings (340, 344, 361 and 434 HV_{10k}) could be identified with welds that experienced irregular processing, whether inadequate heat input or misplacement of the temper bead (overlapping the base metal). The schematic drawing of the cross section #4 of weld 1/16" d_{pt}, with all the hardness data is shown in Figure 13. As a result of the hardness fluctuations observed, more hardness readings were made in this weld. The hard spots were all located in the heat affected zone at the toe of the weld. This observation indicates the need for more heat input from the temper bead at the toe of the weld to eliminate the hard spots. The individual hardness readings are compiled in Appendix XIII.

Charpy V-notch impact toughness measurements

Charpy impact tests were carried out at 28°F to determine the impact toughness

of the HAZ of four welds. The shear fracture and lateral expansion of each of the fractured specimens were also measured. The experimental data obtained are listed in Table V.

Table V. HAZ Charpy V-notch Impact Testing Results of the $t_{p/t}$ Weld Specimens at 28°F.

Toe-to-Toe Distance, t _{p/t}	Absorbed Energy (ft-lb)	Shear Fracture (percent)	Lateral Expansion (mils)
1/16"	72	70	60
3/32"	47	75	43
1/8"	49	85	52
3/16"	50	80	55
Base Metal	86	100	77

The heat affected zones of all four "toe-to-toe distance" wet weldments exceeded the Charpy V-notch impact requirements for AWS D3.6 Class A (dry) welds. For the 1/16" d_{ph} weldment, the Charpy V-notch impact tests resulted in an average absorbed energy of 72.3 ft-lb and 70 percent shear on the fracture surface. These impact properties compared favorably with those of the base metal, 86.6 ft-lbs and 100 percent shear. For the 3/32", 1/8" and 3/16" "toe-to-toe distance" weldments, the Charpy test results ranged from 47 ft lbs with 75 percent shear to 50 ft lbs with 80 percent shear. Even though these results were not as impressive as the 1/16" d_{ph} welds, they all exceeded the requirements of AWS D3.6 for Class A (dry) welds. (10 ft lb minimum and \geq 15 ft lb average). It is interesting to note that while the HAZ notch toughness of the 1/16" weldment was significantly greater than that of the other weldments, its HAZ hardness was also higher.

SRC ENGINEERS, INC.

837-3810, 31106 * LAPAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: _Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

P.O. #GD106306 Underwater Weld Sample #4(1/16")

3G - With T.R.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Certified By: Two fine Date: 6-14-93

Reviewed By: Sept. R. College Date: 06-14-93

VICKERS.WLD

Temper Bead Heat Input

As a result of the excellent Charpy impact results of the weldments with 1/16", 3/32" and 3/16" toe-to-toe distance, the welding processing parameters and heat input selected were close to the optimal. However, it was obvious that more heat input would be required in cap passes at the toes of the welds to lower the hardness in the HAZ under those weld beads to the 325 maximum specified by AWS D3.6 for Class A (dry) welds. TAC members proposed that fillet welds, which are most often used for underwater repairs, be used for additional heat input efforts. The following supplemental report covers those successful efforts.

jiphinalrps995 3 - 29

PHASE I SUPPLEMENTAL REPORT

WET FILLET WELDS WITH AND WITHOUT TEMPERING, WITH VARYING DEGREES OF RESTRAINT AND FIVE LEVELS OF HEAT INPUT

Background

Members of the Technical Activities Committee proposed a further investigation of the effectiveness of the multiple temper bead (MTB) wet welding technique in preventing hydrogen induced underbead cracking, and reduction of hardness, in the HAZ of wet fillet welds.

Objective

Expand previously developed information pertaining to groove welds, and more recent information on fillet welds, to include not only the ability to prevent HAZ hydrogen cracking but also the ability to reduce HAZ hardness to the Vickers 10 kg 325 maximum specified by AWS D3.6 for Class A (Dry) welds.

Justification

This supplemental investigation is especially meaningful because the vast majority of underwater wet welded structural repairs are made with fillet welds.

Test Program

5/8" vertical wet fillet welds were made on 3/4" A537 C1.1 normalized (C.20 and CE.462) steel plate with the Program Ex 7 electrodes at -33'. Cross sections were polished/etched and examined at 100x for HAZ hydrogen cracking. Vickers 10 kg hardness tests were made as required by AWS D3.6 for Class A (Dry) welds. Weldments were restrained by either dry, or wet, opposing fillet welds and by welded or mechanical fixtures. (See Photographs)

The work was done in two parts. During Part 1, (reported in the January 1994 Interim Report) two welds were made without temper beads, one with dry welded restraint and the other with mechanical fixture restraint. Two MTB welds were then made with temper bead heat input at 25.5 kJ/in. and the same two types of restraint.

3 - 30

During Part 2, restrained (see Table 1 for types of restraint) MTB welds were made with heat inputs of 32.2, 34.6, and 37.0 kJ/in. A fourth restrained MTB fillet weld was made on which, after the weld was built up to full size, the thickness of two primary weld beads that tied in to the base metal at the toe of the weld was reduced to approximately one-half by grinding, and then reheated by temper beads deposited with 3/32" @ welding electrodes. (1/8" @ electrodes were used for all other welding) Calculated heat input was 29.3 kJ/in. See Fig. 1 for the MTB wet welding technique and Fig. 2 for the MTB/Half-Bead technique including sequence and placement of weld beads/passes.

Results-Multiple Temper Bead Weldments

As shown by the Summary of Vickers 10 kg test results and Table 1 that are part of this report, except at the toe of the weld, all areas of the HAZ are sufficiently tempered (HV 10 < 300) by overlaying weld beads, with or without any deliberate effort by the welder/diver. Three levels of temper bead heat input (25.5, 32.2, and 34.6 kJ/in) failed to reduce the HAZ toe hardness to an acceptable level. When the heat input was increased to 37.0 kJ/in., the average HAZ toe hardness was sharply reduced to 324 vs. 463 for the no temper bead weldment. However, two of the three test results (332 and 355) exceeded our target of the 325 maximum. While a hardness of HV 10 355 is acceptable for most applications, the MTB/Half-bead technique was subsequently used for further reduction of HAZ hardness. (See Results-Multiple Temper Bead/Half-bead Weldments).

jpylinalrpt.995 3 - 33

1/8" DIA. ELECTRODES USED FOR ALL BEADS

FIGURE 1

1/8" DIA ELECTRODES USED FOR ALL PASSES EXCEPT 3/32" DIA USED FOR PASSES 8 AND 13.

PASSES 7 AND 12 GROUND DOWN TO "HALF-BREADS"

FIGURE 2

SUMMARY OF VICKERS 10 KG HARDNESS TEST RESULTS IN HAZ OF WET FILLET WELDMENTS (See Table 1 for Details)

WELDING VARIABLES	AVERAGE H	AZ HARDNESS <u>OTHER</u>	TOE HARDNESS COMMENTS
No Temper Beads	463	291	5 of 6 ≥ 435
Multiple Temper Beads Heat Input 25.5 kJ/in	431	286	2 of 6 ≥ 435
Multiple Temper Beads Heat Input 32.2 kJ/in	410	274	3 of 8 ≥ 435
Multiple Temper Beads Heat Input 34.6 kJ/in	439	270	3 of 8 ≥ 435
Multiple Temper Beads Heat Input 37.0 kJ/in	324	259	2 of 3 ≥ *325
Multiple Temper Beads Plus Half-Bead Technique Heat Input 29.3 kJ/in	282	277	300 max.

^{*}AWS D3.6 specifies Vickers 10 kg 325 maximum for Class A (dry) welds.

NOTE:

Heat inputs are expressed in welding arc output in energy units (kj) per linear inch at weld joint by formula shown in the text of this Supplemental Report.

TABLE 1

WET FILLET WELDS WITH AND WITHOUT TEMPERING,
WITH VARYING DEGREES OF RESTRAINT
AND FIVE LEVELS OF HEAT INPUT

	VICK	ERS 10 kg HARDN	IESS
WELDMENT VARIABLES	TOE	MIDPOINT	ROOT
	482	327	280
No Temper Beads	462 477	292	294
Dry Weld Restraint	442	306	275
No Temper Beads	479	272	306
Fixture Restraint	299*	282	283
Fixture Restraint	435	<u>278</u>	<u>294</u>
Averages	463*	293	289
Multiple Temper Beads*	421	279	283
Level 1 Heat Input (25.5 kJ/in)	400	312	28 9
Dry Weld Restraint	442	289	274
Multiple Temper Beads*	425	306	282
Level 1 Heat Input (25.5 kJ/in)	421	287	286
Fixture Restraint	<u>477</u>	<u>294</u>	<u>263</u>
Averages	431	294	279
Multiple Temper Beads	435	305	273
Level 2 Heat Input (32.2 kJ/in)	426	260	262
Wet Welded Restraint	478	320	262
	410	305	282
	360	252	262
	389	265	255
	461	262	268
	<u>319</u>	<u>282</u>	<u>270</u>
Averages	410	281	267

^{*} The inconsistent 299 hardness was not included in the HAZ Toe Hardness average.

Table 1 (Continued)

WELDMENT VARIABLES	HAZ T TOE	EST SITES (VICKERS MIDPOINT	S 10 KG) ROOT
Multiple Temper Beads	428	272	282
Level 3 Heat Input (34.6 kJ/in)	426	272	293
Wet Welded Restraint	426	262	272
	425	252	299
	455	292	272
	478	262	260
	412	265	252
	<u>460</u>	<u>261</u>	<u>261</u>
Averages	439	267	274
Multiple Temper Beads	355	252	235
Level 4 Heat Input (37.0 kJ/in)	332	267	267
Dry Welded Bar Restraint	<u>284</u>	<u>282</u>	<u>252</u>
Averages	324	267	251
Multiple Temper Beads	252	268	277
Plus Half-Bead Technique	293	297	278
At toes of Weld. Level 5 Heat Input (29.3 kJ/in) Dry	300	272	272
Welded Bar Restraint	***************************************	advantado de del de	
Averages	282	279	275

Material Joining Work Reports and test results are provided in Appendix IX.

NOTES:

- All weld beads were deposited with 1/8" ø electrodes except 3/32" ø electrodes were used for capping and tempering the toes of the Level 5 heat input MTB/halfbead weldment.
- Welds were made on A537 Cl.1 (C.20 and CE.462) 5/8" plate in the vertical position at -33'.
- Formula used for heat input was <u>Amps x Volts x 60</u> = Jules per inch in.
 per minute

Results-Multiple Temper Bead/Half-Bead Weldments

Results of the MTB/Half-Bead weldments were extraordinarily good. HAZ toe hardness averaged 282 with a maximum of 300 (252, 293, and 300).

Supplemental Results and Information

- Of the twenty-eight MTB fillet weld cross sections examined to date at 100x, none showed any evidence of cracks in the HAZ.
- The type of restraint, whether an opposing fillet weld or a mechanical fixture, appeared to have no affect on the propensity for HAZ cracking.
- In November 1992, Gene Mitchell (U. S. Navy) suggested that the half bead temper bead technique be considered for use during the program. At that time, we were of the opinion that the acceptable time interval (before HAZ cracks could develop) between deposition of primary weld beads and temper beads was too short to use any of the time for grinding to reduce the primary weld bead thickness. However, results from timing welds made in October 1993 showed that when for the A537 C1.1 material was welded with Ex 7 electrodes it took up to two hours for the cracks to develop. With that new information, Mr. Mitchell's suggestion was resurrected with the excellent results reported herein.
- The heat input formula used in this report,

H (joules per inch) =
$$E \text{ (volts) } \times I \text{ (amperes) } \times 60$$

S (speed in inches per minute)

is commonly used to express the welding arc output in energy units per linear inch at weld joint. While the formula may be useful in comparing the heat inputs to the HAZ by wet weld temper beads, other essential variables include: thickness of the primary weld bead that is being tempered, distance between the toe of the primary weld bead and the toe of the temper bead, diameter of the tempering electrode, angle of the electrode in relation to the plane of the primary weld bead and welding polarity (Electrode Negative or Positive).

Further investigation would be required to determine the following variables pertaining to the use of the half-bead technique and the application of increased temper bead heat input without the half-bead technique.

ijoVinalrpt.995 3 - 38

of a weld or would the reduction of the thickness of the outermost bead produce acceptable reduction in the HAZ hardness? For wet welds made on the A537 material the area of the HAZ that is susceptible to the excessive hardness is relatively small, i.e. \leq 1/8" (3.2 mm) thick by \leq 1/4" (6.3 mm) wide. It is therefore quite possible that reduction of the thickness of only the outermost primary weld bead is

Is it necessary to reduce the thickness of two primary weld beads at the toe

* Is there any advantage of using 3/32" ø welding electrodes for tempering the half-beads vs. 1/8" ø electrodes that are used for the balance of the welding?

necessary.

- * What is an acceptable thickness range (maximum and minimum) for weld beads that are ground down for tempering at a given level of heat input?
- * While the MTB/half-bead technique was highly effective, it is more time consuming than the MTB alone. Can the HAZ toe hardness be reduced to comparable levels by simply increasing the temper bead heat input at the toe of the weld beyond 37.0 kJ/in?
- * Will it take less heat input to reduce HAZ hardness in materials that have less than the A537 .20 wt. pct. carbon?
- * And finally, next efforts to increase heat input to the HAZ beneath the toes of cap passes should include the conventional above water temper bead procedure i.e., build welds up to full size and then deposit oversized high heat input temper beads near the toes of cap passes. (These beads would then be ground down to meet visual inspection requirements). This procedure, if effective on wet welds, would be more efficient than the half-bead technique.

Effectiveness of multiple temper bead welding in all position wet welding

To demonstrate the broad effectiveness of the multiple temper bead techniques all position wet groove welds were made on 3/4" A537 Class 1 steel plates at -33' and

tested in accordance with the requirements of AWS D3.6 for the qualification of Class A (dry) welding procedures. However, to investigate more in detail the performance of these welds, the welds were allowed to age at ambient temperature for over 72 hours before testing. A second vertical weld was made and impact tested with the notch parallel to the heat affected zone. Charpy impact tests were performed on both the heat affected zone and the weld metal.

The Global Divers reports with the joint design and welding parameters for the 1G, 2G, 3G, and 4G welding are included in the following pages. All weldments met the requirements of AWS D3.6 for Class B (wet) welds. Charpy V-notch HAZ and weld metal impacts results exceeded the requirements of AWS D3.6 for Class A welds.

Tensile Testing Results

For qualification in the first position (1G), all-weld-metal tensile tests results were 75.4 ksi yield and 79.7 ksi ultimate with 12% elongation. (Elongation of weld metal of welds made with commercial wet welding electrodes is usually 6 - 9%). Reduced section tensile test results were 76.2 and 78.6. Average of the three tensiles (78.2 ksi) compares favorable with the 65 - 70 ksi of previously considered excellent for wet welds. SRC's test reports are included in Appendix X. No tensile tests were required for the 2G, 3G, and 4G welds.

Impact Testing Results

än\finalrot.995

Charpy V-notch impact testing at 28°F was carried out on samples extracted from the heat affected zone and weld metal of weld 1G. Table VI contains the average impact energy, percent shear fracture and test specimen lateral expansion data. Detailed reports of the individual tests are included in Appendix XI.

Table VI. Average Impact Test Data for Weld 1G at 28°F.

	Absorbed Energy (ft-lb)	Shear Fracture (percent)	Lateral Expansion (mils)
Heat Affected Zone	43	70	51
Weld Metal	32	100	37

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld (1G)

Sheet 1 of 2 W/O No. <u>ED-012-93</u>

rocation	GLOBAL I	DIVERS - PORT	OF IBERIA	Contr	act No.	91-M-4346
						Grade
Process	SMAW	Current/F	Polarity <u>CC/D</u>	CEP/PULSE	Joint Type _\	V-GROOVE Position 1G (16")
Water Depth			w			
Welding Varia	ibles:					
RF&C	PASS	DIA	AMPS	VOLTS	I.P.M.	REMARKS
ROOT	1	1/8"	155 - 160	32 - 34	8.0	PPS - 125
TEMPER	1	1/8*	155 - 160	32 - 34	6.8	PW - 50%
ROOT	2	1/8"	155 - 160	32 - 34	8.0	Background - 30%
TEMPER	2	1/8"	155 - 160	32 - 34	6.8	Weld Time - 2 Hrs. 48 Min
FILL	3 - 30	1/8*	155 - 160	32 - 34	8.9	Multiple Temper Bead Wet Welding Technique Used.
CAP	31 - 36	1/8"	155 - 160	32 - 34	9.2	
Welder:	Darryl R.	Phillips				Date: 7-1-93
Welding Joir	nt Sketch:				Welding Tech	nniques:
					Stringer Be	eads
	335.	3/8.	3/16.]	1/8*		

Sheet 2 of 2 W/O No. <u>ED-012-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) Reduced Section and All-Weld-Metal

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1 & 2	Transverse	76.202 & 78.627	N/A	N/A	WM
3	Longitudinal	79.684	75.356	12%	WM

Bends: * Best of twelve specimens. See Attached Report.

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1			X	4 T	Satisfactory
2			X	4 T	Satisfactory
3			X	6 T	Satisfactory
4			X	6 T	Satisfactory

Chemistry:

By:

	CE	C	Mn	P	S	SI	NI	Cr	Mo	Cu	V	Cb	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01	w.w.w	

Hardness (Vickers/Rockwell): Vickers 10 kg

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	164	171
HAZ (MAX)	401	395
HAZ (AVG)	298	278
WM (MAX)	223	212

Purpose of Test: Fi	rst position of all-position MTI	B confirmation Welds				
Remarks & Evaluation:	Evaluation: Charpy V-notch Impact Results at 28° F (Averages)					
Location	Absorbed Energy Foot Pounds	% Shear Fracture	Lateral Expansion(Mils)			
HAZ W.M.	42.7 32	70 100	51 37			
No HAZ cracks at 100X. Radiograph met requirements of AWS D3.6 - Class B						
: C.E. Grubbs	Harble	Date: 7-1-93	Rev:			

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld (2G)

Contract No. 91-M-4346

Sheet 1 of 2 W/O No. ED-013-93

ocation GL	OBAL DIVER	S - PORT OF	IBERIA	Con	ract No.	91-M-4346
-tt./Slab No Thick	79006-12 3/4*			in.	Ht./Slab No. Thick	Gradein. Diai
	33'	Current/Po				Groove Position 2G (8")
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
ROOT	1	1/8*	135 - 140	32 - 34	7.8	PPS - 125
TEMPER	1	1/8*	135 - 140	32 - 34	7.1	PW - 70%
ROOT	2	1/8"	135 - 140	32 - 34	8.0	Background - 30%
TEMPER	2	1/8*	135 - 140	32 - 34	7.4	Used MTB Wet Welding Technique
FILL	3 - 37	1/8"	135 - 140	32 - 34	8.6	
CAP	38 - 44	1/8"	135 - 140	32 - 34	9.2	
Welder:	Darryl R. F	Phillips				Date: 7-1-93
Welding Join	nt Sketch:				Welding Tech	hniques:
*					Stringer B	eads
	35.	30.	3/16.]	1/8		

Sheet 2 of 2 W/O No. ED-013-93

Tension Tests: (Red	ced Section/All-Weld-Metal)
---------------------	-----------------------------

N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends:* Best of twelve specimen. See attached report

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1			Х	3-1/3 T	Satisfactory
2			X	3-1/3 T	Satisfactory
3			Х	3-1/3 T	Satisfactory
4			X	3-1/3 T	Satisfactory

Chemistry:

	CE	С	Mn	P	S	SI	NI	Cr	Мо	Cu	٧	Cb	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Additional position (2G) of all position confirmation welds.
•	,
	Additional position (2G

Remarks & Evaluation: Radiograph met requirements of AWS D3.6 for Class B welds.

By: <u>C.E. G</u>	irubbs 🥖	Fauth	Date: _	7/1/93	Rev:	÷ +1 **	······
-------------------	----------	-------	---------	--------	------	---------	--------

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld (3G)

Sheet 1 of 2 W/O No. <u>ED-014-93</u>

LocationG	LOBAL DIVER	RS - PORT OF	BERIA	Cor	tract No	91-M-4346
						Gradein. Diair
	33'	Current/F				Groove Position 3G (8")
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
ROOT	1	1/8"	155 - 160	33 - 35	8.9	PPS - 125
TEMPER	1	1/8"	155 - 160	33 - 35	8.2	PW - 50%
ROOT	2	1/8"	155 - 160	33 - 35	8.9	Background - 30%
TEMPER	2	1 <i>/</i> 8*	155 - 160	33 - 35	8.2	Used MTB Wet Welding Technique
FILL	3 - 36	1/8"	155 - 160	33 - 35	8.2	
CAP	37 - 42	1/8*	155 - 160	33 - 35	9.0	
Welder:	Darryi R. P	hillips				Date: 7-1-93
Welding Joir	nt Sketch:				Welding Tech	niques:
To the state of th					Stringer Be	eads. All passes downhill
	30-	3/8.	3/16.]			

Sheet 2_ of 2 W/O No. ED-014-93

Tension Tests: (Reduced Section/All-Weld-Metal)

N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends:* Best of twelve specimen. See attached report

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1			X	2Т	Satisfactory
2			X	3-1/3 T	Satisfactory
3			X	3-1/3 T	Satisfactory
4			Х	3-1/3 T	Satisfactory

Chemistry:

CHOITES	·· , ·													
	CE	С	Mn	Р	S	SI	N	Cr	Mo	Cu	٧	СЬ	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): N/A

LOCATION LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	
HAZ (MAX)	
HAZ (AVG)	
WM (MAX)	

Purpose o	f Test:	
-----------	---------	--

Additional position (3G) of all position confirmation welds.

Remarks & Evaluation:

Radiograph met requirements of AWS D3.6 Class B welds.

By: C.E. GRUBBS Coulde 1	Date: 7/1/93	Rev:
--------------------------	--------------	------

Sheet 1 of 2 W/O No. <u>ED-015-93</u>

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld (4G)

Location GLOBAL DIVERS - PORT OF IBERIA Contract No. 91-M-4346

Mat1 (1) Ht./Slab No Thick Electrode (AW:	79006-12 3/4"	_ in. Dia		in.	Mat'l (2) Ht./Slab No Thick MfrProprietal	Grade in. Dia in.
Process <u>S</u> Water Depth _ Welding Variat	33'		olarity <u>CC/DC</u>			Groove Position 4G (8")
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
ROOT	1	1/8"	145 - 150	32 - 34	8.9	PPS - 150
TEMPER	1	1/8"	145 - 150	32 - 34	8.2	PW - 70%
ROOT	2	1/8"	145 - 150	32 - 34	8.9	Background - 30%
TEMPER	2	1/8"	145 - 150	32 - 34	8.2	Used MTB Wet Welding Technique
FILL	3 - 41	1/8"	145 - 150	32 - 34	8.4	
CAP	42 - 48	1/8"	145 - 150	32 - 34	9.2	
Welder: Welding Join	Darryl R. F nt Sketch:	Phillips			Welding Tech Stringer B	
	32.	30,	3/16, -	1/8		

Sheet 2 of 2 W/O No. ED-015-93

Tension Tests: (Reduced Section/All-Weld-Metal) ______N/A

SPECIMEN	ORIENT ULTIMATE S.	YIELD S.	ELONGATION	
1				
2				

Bends:* Best of twelve specimen. See attached report

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1			X	2 T	Satisfactory
2			X	2 T	Satisfactory
3			Х	4 T	Satisfactory
4			X	4 T	Satisfactory

Chemistry:

	CE	C	Mn	Р	5	SI	NI	Cr	Мо	Cu	٧	Ср	Nb	Al
CTR	·													
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01	****	

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Remarks & Evaluation: Radiograph met requirements of AWS D3.6 Class B welds.

Ву:	C.E. GRUBBS	194u	ph	Date:	7/1/93	Rev	
-----	-------------	------	----	-------	--------	-----	--

Sheet 1 of 2 W/O No. ED-016-93

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld - Compare Charpy HAZ Notch Orientations

/Slab No ick3/	79006-12 / 4" in	ı. Dia		in.	Ht./Slab No	Gradein. Diaietary Ctry
	33'	Current/Po				Groove Position 3 G (8")
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
Root	1	1/8*	155 - 160	33 - 35	8.0	PPS - 150
Temper	1	1 <i>/</i> 8"	155 - 160	33 - 35	6.7	PW - 70%
Root	2	1/8"	155 - 160	33 - 35	8.0	Background - 30%
Temper	2	1/8"	155 - 160	33 - 35	6.7	41 Passes
Fill	3 - 35	1/8*	155 - 160	33 - 35	8.0	Weld time - 46 min.
Сар	36 - 41	1/8*	155 - 160	33 - 35	9.2	Used Multiple temper bead technique
Welder: <u>Da</u>		36.	1	1/8-	Welding Tech Stringer Beads	Date: 7-1-93 Iniques: S. All passes downhill
		3/8'	3/16.	,		

Sheet 2 of 2 W/O No. <u>ED-016-93</u>

Tension	Tests:	(Reduced	Section/All-Weld-Metal)	N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry:

	CE	C	Mn	Р	s	Si	NI	Cr	Mo	Ċu	٧	CO	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		***

Hardness (Vickers/Rockwell): N/A

LOCATION LEF	T SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Purpose	Of	lest:
---------	----	-------

Compare Charpy V-notch HAZ impact test results with notch oriented per AWS D3.6 Vs

parallel to HAZ.

Remarks & Evaluation:

For Charpy tests on this weldment, the notch was oriented per AWS D3.6. Average

results of tests on four macros were: Absorbed Energy, 44.7 ft. lbs. shear fracture, 85%.

Lateral expansion, 49.5 mils.

By: (C.E. Grubbs	GRant.	1ch	Date:	7-1-93	Rev:	14-44-14-14-14-14-14-14-14-14-14-14-14-1	
-------	-------------	--------	-----	-------	--------	------	--	--

Global Divers & Contractors, Inc. Sheet 1 of 2 W/O No. ED-017-93

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld - Compare Charpy HAZ Notch Orientations

Location	GLOBAL DIV	/ERS - PORT	OF IBERIA	Contra	act No9	1-M-4346		
Mat'l (1) <u>A</u> Ht./Slab No Thick <u>3</u>	537 79006-12 /4"	Grade _ in. Dia	Cl.1	in.	Mat'l (2) Ht./Slab No Thick	Gradein. Diain		
Electrode (AWS	S) <u>E 6013</u>	A5.1 T	N Program E	<u>x 7</u>	Mfr. Propr	ietary Ctry		
Process SMA	w	Current/P	olarity <u>CC/DC</u>	EP/Pulse	Joint Type	Single bevel Position 3G (8")		
Water Depth _	33'	Dry	We	atX	***************************************			
Welding Variat	xes:							
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS		
Root	1	1/8"	160 - 165	32 - 34	5.7	PPS - 150		
Temper	1	1/8"	160 - 165	32 - 34	5.5	PW - 70%		
Root	2	. 1/8"	160 - 165	32 - 34	5.6	Background - 30%		
Temper	2	1/8"	160 - 165	32 - 34	5.7	42 Passes		
Fill	3 - 36	1 <i>/</i> 8"	160 - 165	32 - 34	8.6	Weld time 56 min.		
Сар	37 - 42	1/8"	160 - 165	32 - 34	9.2	Used Multiple Temper Bead Technique		
Welder:	Darryl R.	Phillips				Date: <u>7-1-93</u>		
Welding Joir	nt Sketch:			O win-	Welding Te	•		
				Sun	ger beacs all	passes down hill		
3/16 1/6.								
Parameter Section (Control of Control of Con								

Sheet 2 of 2 W/O No. ED-017-93

Tension Tests: (Reduced Section/All-Weld-Metal)	l)N/A
---	-------

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry:

Chemist	CE	С	Min	Р	S	SI	Ni	Cr	Mo	Cu	٧	Cb	Nfb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Purpose	of	Test:
---------	----	-------

Compare Charpy V-notch HAZ impact test results with notch parallel to HAZ vs AWS D3.6

orientation.

Remarks & Evaluation:

For Charpy impacts on this weldment, the notch was parallel to the HAZ. Average

results of tests on four macros were: Absorbed Energy, 29.3 ft. lbs. Shear Fracture, 70%.

Lateral Expansion, 31.7 mils.

Ву:	C.E. GRUBBS	1. Traffe	Date:	7-1-93	Rev:	

Weld Hardness Results

As illustrated in Figure 14, even though the average hardness reading was only $288~HV_{10k}$, two of the twelve readings exceeded substantially the $325~HV_{10k}$ limit specified by AWS D3.6 for Class A welds. These readings were 401 and 395 HV_{10k} , respectively. These two readings are located in the HAZ at the toe of the weld which verifies the need for more temper bead heat input at the toe of cap passes. The maximum hardness of the weld metal was $223~HV_{10k}$.

Because of an inappropriate sequence of events, the all position groove welds were made before the supplemental welds with increased levels of heat input and the half-bead technique welds were made. Without the benefit of the knowledge gained from results of the supplemental increased heat input welds, the MTB procedure was ineffective in reducing HAZ hardness, at toes of cap passes.

Bend Test Results

For Class A welds, AWS D3.6 specification requires bending radii from 2 T to 3-1/3 T, depending on the minimum specified base metal yield strength. For wet welds the specification requires only 6 T bending.

Side bend tests were performed on all welds. For the overhead position weld, only four specimens, as required by AWS D3.6, were tested. For the three other positions, four specimens were initially tested. The results of these tests, in the form of test certificates issued by SRC Engineers, Inc., are included in Appendix XII. These results are also summarized in Table VII. For the flat, horizontal and vertical position welds, additional bend specimens were tested to attempt better results. In total, twelve specimens from each of the three positions were bend tested. All specimens failed at locations near the center of the weld metal.

The bending of each specimen was started on a 6 T mandrel and progressed to 4 T, 31/3 T, and 2 T or failure. While this method may be unorthodox, it provides maximum information without the cost of making additional weldments. One participant maintained that use of the multiple radii procedure increased the ductility of the weld metal and therefore, the possibility of making smaller radius bends. Others were of the

jip/finalrpt.995 3 - 53

SRC ENGINEERS, INC

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/4" X 16" weld(GD406178) 1G Wetweld With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ Examined at 5X, 50X, & 100X Magnification. No evidence of Hydrogen cracking was found.

EQUIPMENT UTILIZED FOR TEST					
Type:Tukon Model LR Microhardness Tester					
Manufacturer: Wilson					
Serial No.: LR-997					
Last Calibration: <u>January 18, 1993</u>					

SRC Job No.

92-352

Certified By:

Date:_6-28-9 ?

Reviewed By: Sepha

Date: 06-28-83

GLOBALS.VIC

opinion that repeated bending "work hardened" the weld metal and reduced ductility. Subsequent tests indicated that there is no substantive differences in results produced by the two bending procedures. For specimens that had undergone 6T and 4T bends, 30 of 30 passed the 3-1/3T test. For single radius bends, 31 of 31 were satisfactory when bent only on the 3-1/3T radius mandrill.

Table VII. Side Bend Test Results of the Four Welding Positions. (Data expressed as bend radius at which results were satisfactory)

Flat	Horizontal	Vertical	Overhead
2 - 4 T	4 - 3-1/3 T	1 - 2 T	2 - 2 T
2-6T		3 - 3-1/3 T	2 - 4 T

HAZ Impact Properties with the Notch Parallel to the HAZ

To further demonstrate the excellent mechanical properties obtained using the multiple temper bead technique, HAZ impact test specimens were prepared with notches machined parallel to the heat affected zone, instead of the conventional AWS D3.6 specified orientation. A drop of 16 ft lbs average absorbed energy, from 45 to 29 ft lbs, was observed as compared to 15 ft lbs average specified by AWS D3.6 for Class A welds. The decrease was expected since the new configuration forces the cracks to propagate directly into the heat affected zone.

Microscopic Examinations

For qualification of Class A welding procedures, AWS D3.6 specifies that micrographs of cross sections of welds shall not reveal any cracks at 5X magnification, and the only micrograph required is one from the first position. During examination of the all position confirmation welds on A537 steel, the first position (1G) cross section did not exhibit any cracks at 100X magnification. Supplemental examination, not required by AWS D3.6, of micrographs from four cross sections of weldments from each of the other three positions revealed heat affected zone cracking at 50X magnification. However, all unsatisfactory side bends failed at or near the center of the weld metal with no indication of cracks in the heat affected zone. Micrographs of the cross sections of the confirmation

jip\finalrpt.995 3 - 55

welds in the vertical and overhead position are shown in Figure 15. Radiographic analyses were also performed on all welds with no indication of cracking. Global Divers welding reports and impact test results for the welds tested with the Charpy V-notch located parallel to the HAZ, vs. orientation specified by AWS D3.6, plus radiographs of the all position welds, are included in Appendix XIII.

Weldments With and Without MTB

As discussed previously in the section on base metal selection, many of the existing offshore platforms were fabricated using ASTM A36 Grade steels for which no tight control of chemical composition is required. This task will verify the effectiveness of the MTB technique in reducing HAZ hardness and improving Charpy V-Notch impact properties by conducting parallel sets of welds with and without multiple temper bead application. This set of experiments includes both cracking susceptible and non-crack susceptible steels. In addition to the A537 steel, two A36 grade steels with 0.26 wt. pct. carbon equivalent and 0.14 wt. pct. carbon, and 0.415 wt. pct. carbon equivalent and 0.24 wt. pct. carbon were also used. The Global Divers welding reports with the welding parameters, joint design and plate compositions for the three groups of welds are included in Appendix XIV.

Base Metal 1

Based on the AWS D3.6 short formula and chemical composition information provided by the vendor before purchase, the carbon equivalent of this ASTM A 36 steel should have been approximately 0.38 wt. pct.. While not susceptible to HAZ hydrogen cracking, it should have exhibited significant hardening in the heat affected zone during welding. Chemical analysis performed with the actual plate material (after purchase) showed substantially lower alloying and low carbon (0.14 wt. pct.) content, which resulted in a very low carbon equivalent (0.26 wt. pct.).

Neither the weldments with MTB, nor the weldments without tempering, was subject to cracking or excessive hardness. Nevertheless, knowing the chemical composition of the alloy, it is not surprising that the mechanical properties (hardness and impact toughness) of both welds exceeded the requirements of AWS D3.6 for Class A welds. A comparison of the welds with and without multiple temper bead technique application is given in Table VIII.

jip\finalips,995 3 - 56

Confirmation Welds on 3/4" ASTM A537 Class 1 (CE.462)

Overhead Position

Vertical Position

Table VIII. Comparison of Charpy V-Notch Impact Results of Low Carbon Equivalent A36 Steel HAZ With and Without Multiple Temper Bead Technique Application.

	With MTB	Without MTB	
Charpy Impact Properties at 28°F Average of Four Tests ¹ (ft-lb)	71	73	
Shear fracture (percent)	62	80	
Lateral Expansion (mils)	57	70	
Maximum HAZ Hardness ² (HV _{10k})	226	244	

¹ The individual data are reported in Appendix XV.

Base Metal 2

The second set of welds, with and without tempering, was made on ASTM A588-88A Grade B material with CE .449.

There were no significant differences in hardness and Charpy impact test results from the two weldments. Impacts at 28° F exceeded the AWS D3.6 requirements for Class A welds and maximum Vickers 10kg HAZ hardness of 370 was acceptable for most applications.

The lack of HAZ cracking, and the acceptable notch toughness and hardness, are attributed to the relatively high percentages of chromium (.59) and nickel (.27). Copper was also high (.28).

Figure 16 shows the good surface quality of both welds. Impact properties and VH 10 hardness are summarized in Table IX.

² The individual data are reported in Appendix XVI.

Table IX. Comparison of Charpy V-Notch Impact Results of A588 Grade Steel Weld HAZ With and Without Multiple Temper Bead Technique Application.

	With MTB	Without MTB	
Charpy Impact Properties at 28°F Average of Four Tests (ft-lb) ^a	32	36	
Shear fracture (percent)	68	63	
Lateral Expansion (mils)	35	36	
Maximum HAZ Hardness ^b (HV _{10k})	382¹	370²	

^a The individual data are reported in Appendix XVII.

There were no significant differences in hardness and Charpy impact test results from the two weldments. Both Charpy impact toughness exceeded the requirements of AWS D3.6 for Class A welds. The HAZ hardness of the A588-88A HAZ was only marginally acceptable.

Use of the MTB wet welding method on Normalized A588-88A Grade B material did not improve the mechanical properties of weldments. The HAZ of the normalized material seems to have acceptable notch toughness with or without tempering. And, there was not enough heat impact at the toes of the welds to reduce HAZ hardness.

Base Metal 3

The third sets of groove welds, with and without multiple temper bead application, was performed on 1/2" thick ASTM A 36 Grade steels with a 0.415 wt. pct. carbon equivalent and 0.24 wt. pct. carbon content. Figure 17 demonstrates the excellent surface quality of the two welds. These welds and the testing procedure were proposed by the TAC members at the August 1993 meeting. (*Note: The majority of existing offshore platforms were constructed of A36 tubular members with chemical composition*

ijolfinalipt.995 3 - 59

^b The individual data are reported in Appendix XVIII.

¹ Thirteen of forty-eight readings were greater than 325 HV_{10k}. Average: 356 HV_{10k}.

² Eleven of forty-eight readings were greater that 325 HV_{10k}. Average: 347 HV_{10k}

ranging between Base Metal 1 to Base Metal 3 in this experimental program.) Testing included side bends and Vickers hardness at 10kg load. Hardness measurements were made at four locations adjacent to the toe of the cap passes on each side of the weld, where maximum HAZ hardness usually occurs.

Both welds, with and without MTB practice, performed satisfactorily in the tests. Microscopic examinations at 100X magnification did not show any cracks (See Appendix XIX for the individual test reports.) All side bend tests (four) were satisfactory when bent successively from 6T to 4T to 31/3 T. The test certificates issued by SRC Engineers, Inc. are included in Appendix XX. This behavior is unexpected since previous Global Divers experience showed that untempered weldments of this same materials failed 6 T bend tests. (Three sets of four side bend tests failed 6 T bend tests.)

The effectiveness of the MTB wet welding method in reducing HAZ hardness on this type of material was clearly evident in Table X. A reduction of approximately 17 percent hardness in the "bulk" heat affected zone was achieved. The number of readings that exceeded 325 HV_{10k} also decreased significantly. The individual hardness data are compiled in Appendix XXI.

3 - 60

Welds on 5/8" A588-88A Gr. B (CE .449) Plate With and Without Multiple Temper Beads

Without Temper Beads

With Temper Beads

Welds on 1/2" A36 (C.24 CE .415) Plate With and Without Multiple Temper Beads

Without Temper Beads

With Temper Beads

Table X. Comparison of high carbon equivalent A36 Grade Steel Welds With and Without Multiple Temper Bead Technique Application.

	With MTB	Without MTB
Average Maximum Hardness of 8 Readings Under the Toes of the Cap Welds (HV _{10k})	453	463
Average Maximum Hardness of 24 Readings Other locations of the HAZ (HV _{10k})	282	338
Number of Readings Exceeded 352 HV _{10k} (Out of 32 Readings)	13	23

Supplemental Charpy V-notch Information (Weld Metal and HAZ)

Energy Absorption - Temperature Transition Curve For Wet Weld Metal

To quantify underwater wet welds for service, their impact properties must meet the application (fitness for purpose) requirements. It is highly desirable to have available a large database to support the fact that underwater wet welds can perform satisfactorily in structural applications. Current data on impact toughness of underwater wet welds are scarce and sometimes biased (for example, January 1994 Issue of the AWS Welding Journal). Members of the Technical Activities Committee requested the program to perform wet weldments and Charpy V-notch impact tests to determine the energy absorbed at fracture as a function of testing temperature.

Test Program

A wet groove weld with multiple temper beads was made on 3/4" thick A537 Class 1 steel with the Ex 7 welding electrodes in the vertical position at 33' water depth. Twenty one full-size Charpy V-notch impact specimens were extracted from the weldment and tested at temperatures ranging from 60 to -40°F. Prior to the underwater wet welding, the plate edges and backing bar were overlaid in air per AWS D3.6-93. Details of the welding parameters and joint design are shown in Global Divers welding report in the following pages.

iio/finalipt.995 3 - 63

Sheet 1 of 2 W/O No. ED- 028-93

MATERIALS JOINING WORK REPORT TEMPERATURE TRANSITION CURVE

### 11 A537	ocation <u>G</u>	llobal Divers 8	Contractors,	Inc. Port of Ibe	eria	Contra	act No. 91-M-4346
Valer Depth	hick	3/4"	_ in. Dia		m.	Ht./Slab No	in. Di a ir
RF&C PASS DIA. AMPS VOLTS L.P.M. REMARKS	Water Depth _	33'	Dry	W	et <u>X</u>		Position 3G
ROOT						I.P.M.	REMARKS
FILL 3 - 31 1/8" 175 30 11.8 Plate edges and backing bar were CAP 32 - 38 1/8" 175 30 11.9 overlayed in air per AWS D3.6-93. Figure 14 D. Welder:					30	9.7	Weld time 73 minutes.
CAP 32 - 38 1/8" 175 30 11.9 overlayed in air per AWS D3.6-93. Figure 14 D. Welder:			1/8*	175	30	11.8	Plate edges and backing bar were
Welder: Darryl R. Phillips Date: 10-28-93		32 - 38	1/8"	175	30	11.9	overlayed in air per AWS D3.6-93.
Welding Joint Sketch: SURFACING LAYERS SURFACING LAYERS Welding Techniques: Stringer Beads - All Passes Down Hill.	<u> </u>						Figure 14 D.
Welding Joint Sketch: SURFACING LAYERS Welding Techniques: Stringer Beads - All Passes Down Hill.							
Welding Joint Sketch: SURFACING LAYERS Welding Techniques: Stringer Beads - All Passes Down Hill.							
,	Welding Joir	nt Sketch:		LAYER	ACING RS	_	nniques:

SPECIMEN 1

Tension Tests: (Reduced Section/All-Weld-Metal)

ORIENTATION

Sheet 2 of 2 W/O No. <u>ED-028-93</u>

FAILURE

	2							v.a						
Bends:			N/A											
SPECIMEN		ROOT			FACE		SIDE		RADIUS		RESULTS			
	1													
	2													,
	3													
	4													
Chemist	try:	A53	7 Cl.1					····			- -			
	CE	c	Mn	Р	S	SI	NI	Cr	Ma	Cu	V	Сь	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		
HAZ (METAL (MAX) (AVG)	(AVG.)												
WM (I	MAX)													
Detented Remains Twented 40° C	odes. arks & Ev ty-one Ch	rgy absoration aluation arpy V-i esults or	: notch im n the we	npact spe t welded	ecimens I specim	were te	ested at	temper	d metal of atures rar I the AWS	nging fron	n 60° F (1	15.6° C) c	lown to ~	
L By:	G.I	E. Grubl	bs C	F.S.	66		Date	1	1-23-93		Re	v:		

N/A

YIELD PSI.

ELONGATION

ULTIMATE PSI.

Results and Discussion

The Charpy impact results of the wet welded specimens are shown in Figure 18. The upper and lower shelf energies are approximately 30 and 15 ft-lbs, respectively. The ductile-brittle transition temperature is around 10°F. These data significantly exceeded the AWS D3.6 requirements for Class A (dry) welds, with the upper shelf temperature extending to 20°F. For class A (dry) welds, AWS D3.6 specifies not less than 15 ft-lbs (20 J) average and 10 ft-lbs (14 J) minimum for welds made on 70 ksi (485 MPa) base metal at the minimum design service temperature (assumed to be 32°F (0°C). In fact, the impact properties of this wet weld, made with the Ex 7 electrodes at a depth of 33', exceeded not only the AWS D3.6 requirements for Class A (dry) welds at the lowest practical service temperature (28° F) for an underwater structural repair, they also exceeded the D3.6 requirement to -25°F.

Figure 19 shows the experimental data on lateral expansion of the Charpy V-notch specimens as a function of testing temperature. As expected, lateral expansion decreased with decreasing testing temperature. The amount of lateral expansion of the Charpy specimens indicates the amount of shear (plastic deformation) involved in the fracture process. As such, decreasing testing temperature will decrease the amount of plastic deformation in the fracture, thus reducing the lateral expansion. The Charpy V-notch impact test results are compiled in Appendix XXII.

Energy Absorption - Heat Affected Zone of Wet Weldments

Table II summarizes the impact properties of heat affected zones of five different materials when welded with the Program Ex 7 electrodes:

- 1) A537 Class 1 with 0.462 wt. pct. carbon equivalent and 0.20 wt. pct. carbon content,
- 2) A36 steel with 0.26 wt. pct. carbon equivalent and 0.14 wt. pct. carbon content,
- 3) A588-88A steel with 0.449 wt. pct. carbon equivalent and 0.13 wt. pct. carbon content,
- 4) BS 4360 Grade 50D steel with 0.42 wt. pct. carbon equivalent, and
- 5) A106 Grade B steel with 0.42 wt. pct. carbon equivalent.

iio\tinairot.995 3 - 66

Figure 18

Figure 19

Figure 20

Based on the HAZ impact test results (51 ft-lbs average impact toughness) of the A537 Class 1 steel weldments reported in Table III, one may conclude that at 28°F, the impact properties of the HAZ of the weldments were significantly superior to those of the weld metal, which exceeded the AWS D3.6 requirements for Class A (dry) welds.

Finally, the relationship between impact energy and carbon equivalent can be clearly seen in Figure 20. As the alloy carbon equivalent increased, the amount of energy absorbed at fracture at 28/32°F decreased substantially. This trend clearly indicates the influence of alloy hardenability and microstructure on fracture resistance. High strength microstructures such as martensite will usually exhibit reduced impact toughness at low testing/application temperatures.

Table II. Heat Affected Zone Impact Toughness of Five Different Steels Using Charpy V-Notch Testing at 28°F.

	1	1	·	
Steel Type	Energy Absorbed at Fracture (ft-lbs)	Shear Fracture (percent)	Lateral Expansion (mils)	Carbon Equivalent (wt. pct.)
A537 Class 1	43	70	51	0.462
A537 Class 1	45	85	50	0.462
A537 Class 1	72	70	60	0.462
A537 Class 1	47	75	43	0.462
A537 Class 1	49	85	52	0.462
A537 Class 1	50	80	55	0.462
A36*	71	62	57	0.26
A588-88A Grade B*	32	68	35	0.449

Steel Type	Energy Absorbed at Fracture (ft-lbs)	Shear Fracture (percent)	Lateral Expansion (mils)	Carbon Equivalent (wt. pct.)	
BS 4360 Grade 50D**	42		er oe	0.42	
A106 Grade B**	40	57	37	0.42	

Testing Temperature: 28°F.

SUPPLEMENTAL MTB INFORMATION (Two Reports)

- 1. Using Global Divers' proprietary MTB wet welding method and electrodes under Global Divers' supervision, a North Sea diving company qualified wet welding procedures and sixteen welder/divers on British Standard 4360 Grade 5OD crack susceptible (CE = 0.416 wt. pct.) material in accordance with the requirements of AWS D3.6 for Class B welds. Supplemental Charpy V-notch impact tests at O° C (32° F) resulted in average HAZ absorbed energy of 41.7 ft-lb and weld metal 34.5 ft-lb (Dr. S. Ibarra, Amoco Research has detailed test results). This was the first use of the Multiple Temper Bead wet welding method which was developed specified for replacement of a 30" diameter, 65' long, 16 ton vertical diagonal brace on Amoco's U.K. Montrose platform in 1990. (See repair photographs on the following pages).
- 2. The following test results were obtained during qualification of all position fillet welds on ASTM A106 Grade B pipe for the repair of a hurricane damaged structure in the Gulf of Mexico. Carbon equivalent of the material at some of the repair locations was .42 and test welds demonstrated that it was susceptible to hydrogen induced under bead cracking in the HAZ. Welding procedures were qualified using the multiple temper bead wet welding method and Global 1 (Ex 7) electrodes. Two all weld metal tensile tests results were: 59,500 psi yield, 67,500

jp/finalrpt.995 3 - 71

^{**} Testing Temperature: 32°F. Test not performed for this program and data not reported in Interim Report #1.

psi ultimate tensile with 12 % elongation and 64,000 psi yield, 74,600 psi ultimate with 15% elongation. HAZ Charpy V-notch impact test results at 32° F averaged: absorbed energy 40 ft-lb, shear fracture 57% and lateral expansion 37 mils, weld metal average results were: absorbed energy 32 ft-lb, shear fracture 100% and lateral expansion 37 mils. For Vickers 10 kg HAZ hardness, two of six readings (342 and 345) exceeded 325 specified by AWS D3.6 for Class A welds, HAZ average was 282. Weld metal maximum was 242.

ilo\finairot.995

3 - 72

First Use of The Multiple Temper Bead Wet Welding Method - North Sea August 1990

Amoco U.K. Montrose A Platform

30" Ø x 65' BS 4360 Grade D Brace

Welding With Global 1 Proprietary Electrodes

Wet Welding and Nondestructive Examination Complete

MTB CONCLUSIONS/DISCUSSION

Except where noted otherwise, the following conclusions are based on test results of a multiplicity of carefully controlled experimental wet welds made at -33 ft in the vertical position with the Program Ex 7 electrodes on the A537 Class 1 material.

- The acceptable time interval between deposition of primary weld beads that tie into crack susceptible (CE >.40) base metals, and the deposition of temper beads, was determined to be ≥ 2 hours. i.e., it took at least two hours for the hydrogen induced underbead cracks to develop in the HAZ of the base metal. This information is essential to the selection of the most efficient sequence for deposition of weld beads/layers.
- 2. The MTB technique was effective in preventing HAZ cracking with distances between toes of primary and temper beads varying from 1/16" to 3/16". This latitude of temper bead placement indicates that the MTB technique can be used under less than ideal underwater work conditions, and by less that highly skilled welder/divers.
- 3. Results of Vickers 10kg hardness test show that with or without, deliberate use of temper beads, excessive hardness (>325) was found only in the HAZ under the toes of cap passes. This emphasizes the need for increased temper bead heat input (≥ 37.0 kJin), or the half bead procedure as described in the Phase I Supplemental Report reference fillet welds.
- 4. The weld metal and HAZ Charpy V-notch impact properties at 28° F significantly exceeded the AWS D3.6 requirements for Class A (dry) welds. In fact, weld metal impacts met the AWS requirements at test temperatures down to -25° F.
- 5. Prior to the use of the Ex 7 electrodes, all evidence indicated that for wet welds, HAZ hydrogen cracking developed within less than 10 minutes. The fact that the Ex 7/A537 weldments took ≥ 2 hours to show evidence of HAZ cracking raised the question: Did use of the Ex 7 electrodes, or normalization of the A537 material delay the HAZ cracking? This doubt was dispelled when the Navy A516 Gr. 70 (CE .44) normalized plate was

welded with Ex 7 electrode with no temper beading and, not only were no cracks seen during welding or magnetic particle examination, but one of four macros from the 3/4" 3G weld did not reveal any HAZ cracks at 100x. As previously report, when this material was welded with commercial wet welding electrodes, the welder reported HAZ cracking as he was making the weld.

3 - 76

MULTIPLE TEMPER BEAD WELDING (Phase I, Part 1)

Appendices

Table of Contents

<u>Documents</u>	<u>Appendix</u>
Multiple Temper Bead (MTB) Time interval welds - SRC Engineering, Inc. Mt Lab (SRC) Microscopic (100X) Examination Results. (45, 105, 120, 135, and 195 second intervals).	V
MTB Time Interval Welds - SRC 100X Examination Results. (60, 90, 150, 180, and 210 second intervals).	VI
MTB Time Interval Welds - SRC 100X Examination Results (4 to 10 minutes at 30 second intervals, 10 to 60 minutes at 10 minute intervals, 1 to 2 hours at 30 minute intervals, and 2.5 to 4 hours at 30 minute intervals).	VII
Global Divers Material Joining Work Reports (MJWR) for MTB Toe-to-Toe Distance Welds with SRC 100X Examination Results, Vickers 10 kg Hardness Surveys and Charpy V-notch HAZ test results. (3/32", 1/8", and 3/16" Toe-to-Toe Welds).	VIII
MJWR's for MTB Fillet Welds with SRC 100X examination results and Vickers 10kg hardness surveys for welds made with heat input levels of 2, 3, 4, and 5.	IX
All-weld-metal, and reduced section, tensile test results	x
Charpy V-notch HAZ and weld metal test results.	ΧI
Side bend test results (All position 3/4" groove welds).	XII
MJWR's and Charpy V-notch Impact results with Notch parallel and non-parallel, to the HAZ, plus radiographs of all position confirmation welds.	XIII

MJWR's for welds made with and without MTB on A36 (CE .26), A36 (CE .415) and A488-88A (CE .449) base metal.	XIV
Charpy V-notch HAZ test results of specimens from welds made with and without MTB's on A36 (CE.26) base metal.	XV
Vickers 10kg hardness surveys on welds made with and without MTBs on A36 (CE.26) base metal	XVI
Charpy V-notch HAZ test results of specimens from welds made with and without MTB's on ASTM A588-88A base metal.	XVII
Vickers 10kg hardness surveys on welds made with and without MTBs on A588-88A base metal.	XVIII
Results of 100X HAZ examinations of welds made with and without MTB's on A36 (CE.415) base metal.	XIX
Side bend test results - welds made with and without MTBs on A36 (CE.415) base metal.	xx
Vickers 10kg hardness surveys of welds made with and without MTBs on A36 (CE .415) base metal.	XXI
Charpy V-notch weld metal impact test results developed for the energy absorption temperature transition curve.	XXII

APPENDIX V

SRC ENGINEERS, INC.
SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers
New Iberia, La.
TEST PERFORMED: Macro Etch on weld sample
P.O. #GD106064 Underwater Weld Sample-45 sec.
Specification: In accordance with AWS D3.6
MACRO TEST RESULTS:
HAZ Examined at 5X, 50X, & 100X Magnification.
No evidence of any Hydrogen Cracking were found.
No evidence of any nydrogen cracking were remain
TOTAL TOTAL TOTAL TOTAL TOTAL MICH
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Im Ber Date: 6-24-93
Reviewed By: Scapt 12 Calle Date: 6-24-93
Reviewed By: Date: 0-64-73

GLOBAL MAC

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
TEST PERFORMED: Macro Etch on weld sample
P.O. #GD106064 Underwater Weld Sample-105 sec.
Specification: In accordance with AWS D3.6
MACRO TEST RESULTS:
HAZ Examined at 5X, 50X, & 100X Magnification.
No evidence of any Hydrogen Cracking were found.
No evidence of any nydrogen cracking were round.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Im Pare: 6-24-93
Reviewed By: South Date: 6-24-93

GLOBAL .MAC

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
rest performed: Macro Etch on weld sample P.O. #GD106064 Underwater Weld Sample-120 sec.
F.O. #GD100004 Onderwater Werd bampre-120 Sec.
Specification: <u>In accordance with AWS D3.6</u>
MACRO TEST RESULTS:
will be the for a loop to midiantian
HAZ Examined at 5X, 50X, & 100X Magnification.
No evidence of any Hydrogen Cracking were found.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Im Possel Date: 6-24-93
- 1 DM - 1 31.63
Reviewed By: Some College Date: 6-24-83

GLOBAL .MAC

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers
New Iberia, La.
TEST PERFORMED: Macro Etch on weld sample P.O. #GD106064 Underwater Weld Sample-135 sec.
P.O. #GD106064 Underwater werd Sample-133 sec.
Specification: In accordance with AWS D3.6
MACRO TEST RESULTS:
HAZ Examined at 5X, 50X, & 100X Magnification.
and the second second
No evidence of any Hydrogen Cracking were found.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: <u>December, 1992</u>
SRC Job No. 92-352
Certified By: Twe Breed Date: 6-24-93
Certified by: / Nu Date: 0 2 /
= 1/1/D
Reviewed By: South Date: 6-24-93

GLOBAL .MAC

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
•	
TEST PERFORMED:	Macro Etch on weld sample P.O. #GD106064 Underwater Weld Sample-195 sec.
	In accordance with AWS D3.6
specification:	TH accordance with the second
	MACRO TEST RESULTS:
HAZ Examined	at 5X, 50X, & 100X Magnification.
No evidence	of any Hydrogen Cracking were found.
	EQUIPMENT UTILIZED FOR TEST
Type: Meta	allograph
Manufacture	: Olympus
Serial No.:	502796
Last Servic	ing: December, 1992
SRC Job No	92-352
Certified By:_	Tim Bernet Date: 6-24-93
Reviewed By:	Date: 6-29-93
Weatemen DA:	

GLOBAL MAC

Appendix VI

OIC DIACT	NEEKS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: _	Global Divers
-	New Iberia, La.
	Macro Etch on weld sample
_	P.O. #GD106064 Underwater Weld Sample-60 sec.

Specification: In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 5X, 50X, & 100X Magnification.

Indications of Unidentified Cracks were found.

Further study of these cracks by the Colorado

School of Mines is advised.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: Tim farm Date: 6-29-93

Reviewed By: South College Date: 6-24-93

GLOBAL.MAC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Macro Etch on weld sample
P.O. #GD106064 Underwater Weld Sample-90 sec.

Specification: In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 5X, 50X, & 100X Magnification.
Indications of Unidentified Cracks were found.
Further study of these cracks by the Colorado
School of Mines is advised.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: 1m feet Date: 6-24-9=

Reviewed By: Sephil Colog Date: 6-24-93

GLOBAL .MAC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers
New Iberia, La.

TEST PERFORMED:

Macro Etch on weld sample
P.O. #GD106064 Underwater Weld Sample-150 sec.

Specification:

In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 5%, 50%, & 100% Magnification.
Indications of Unidentified Cracks were found.
Further study of these cracks by the Colorado
School of Mines is advised.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer:	Olympus			
Serial No.:	502796			
Last Servicing:	Decem	ber, 1992		

SRC Job No. 92-352

Certified By: Inn Page Date: 6-24-93

Reviewed By: Sept NCM Date: 6-24-93

GLOBAL MAC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Macro Etch on weld sample
P.O. #GD106064 Underwater Weld Sample-180 sec.

MACRO TEST RESULTS:

HAZ Examined at 5X, 50X, & 100X Magnification. Indications of Unidentified Cracks were found. Further study of these cracks by the Colorado School of Mines is advised.

Specification: In accordance with AWS D3.6

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Metallo</u>	graph
Manufacturer:	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

SRC Job No. 92-352

Certified By: Two Date: 6-24-93

Reviewed By: Date: 6-24-93

GLOBAL.MAC

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
TEST PERFORMED: Macro Etch on weld sample P.O. #GD106064 Underwater Weld Sample-210 sec.
Specification: In accordance with AWS D3.6
MACRO TEST RESULTS:
HAZ Examined at 5%, 50%, & 100% Magnification.
Indications of Unidentified Cracks were found.
Further study of these cracks by the Colorado
School of Mines is advised.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Im Bau Date: 6-24-93
Reviewed By: Date:

GLOBAL.MAC

Appendix VII

TEMPERED BEAD TIMING WELDMENTS

Four Minutes to Ten Minutes

Thirty Second Intervals

No HAZ Cracks

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
TEST PERFORMED: Macro Etch of Timing Beads on A537 Plate P.O. #GD406936 Time: 240 seconds
Specification: <u>In accordance with AWS D3.6</u>
MACRO TEST RESULTS:
HAZ Examined at 50%, & 100% Magnification. No evidence of Hydrogen Cracking were found.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Im Research Date: 9-29-93

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
TEST PERFORMED: Macro Etch of Timing Beads on A537 Plate P.O. #GD406936 Time: 270 seconds
Specification: <u>In accordance with AWS D3.6</u>

HAZ Examined at 50%, & 100% Magnification.
No evidence of Hydrogen Cracking were found.

	EQUIPMENT UTILIZED FOR TEST
!	Type: Metallograph
1	Manufacturer: Olympus
2	Serial No.:502796
I	Last Servicing: December, 1992
SRC	Job No. 92-352
Cert	ified By: Im Frank Date: 9-29-93

SRC ENG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
TEST PERFORMED:	Macro Etch of Timing Beads on A537 Plate P.O. #GD406936 Time: 300 seconds
•	
Specification:	In accordance with AWS D3.6

HAZ Examined at 50%, & 100% Magnification.

No evidence of Hydrogen Cracking were found.

ſ	
	EQUIPMENT UTILIZED FOR TEST
	Type: Metallograph
	Manufacturer: Olympus
	Serial No.: 502796
	Last Servicing: December, 1992
SI	RC Job No. 92-352
Сє	ertified By: 1m france Date: 9-29-97

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers
New Iberia, La.
TEST PERFORMED: Macro Etch of Timing Beads on A537 Plate P.O. #GD406936
Time: 330 seconds
Specification: In accordance with AWS D3.6

HAZ Examined at 50%, & 100% Magnification.

No evidence of Hydrogen Cracking were found.

ſ	
L	EQUIPMENT UTILIZED FOR TEST
	Type: Metallograph
	Manufacturer: Olympus
	Serial No.:502796
	Last Servicing: December, 1992
SR	C Job No. 92-352
Ce	rtified By: Im Encural Date: 9-29-93

337-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-57
	Global Divers New Iberia, La.
PEST PERFORMED:_	Macro Etch of Timing Beads on A537 Plate P.O. #GD406936 Time: 360 seconds
pecification:	In accordance with AWS D3.6
	MACRO TEST RESULTS:
HAZ Examined a	MACRO TEST RESULTS: at 50X, & 100X Magnification.
	at 50X, & 100X Magnification.
	at 50X, & 100X Magnification.
	at 50X, & 100X Magnification.
	at 50%, & 100% Magnification.
	at 50%, & 100% Magnification.
	at 50%, & 100% Magnification. f Hydrogen Cracking were found. EQUIPMENT UTILIZED FOR TEST
No evidence of	at 50X, & 100X Magnification. f Hydrogen Cracking were found. EQUIPMENT UTILIZED FOR TEST ograph
No evidence of	at 50%, & 100% Magnification. f Hydrogen Cracking were found. EQUIPMENT UTILIZED FOR TEST ograph Olympus

Certified By: Tim Grand Date: 9-29-93

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers
New Iberia, La.
TEST PERFORMED: Macro Etch of Timing Beads on A537 Plate P.O. #GD406936
Time: 390 seconds
Specification: In accordance with AWS D3.6

HAZ Examined at 50X, & 100X Magnification. No evidence of Hydrogen Cracking were found.

EQUIPMENT	UTILIZED FOR TEST
Type: <u>Metallograph</u>	
Manufacturer: Olympus	
Serial No.: 502796	
I ach Court	er, 1992
SRC Job No92-352	

Certified By: Tim Grunnel Date: 9-29-93

GD406936

SAC ENG.	LNEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate
•	P.O. #GD407021
-	3/4" A537 Class 1 Mat'l.(.462 C.E.) 6.5 min.
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification. There was no evidence of any cracking.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer:	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

im farged Date: 10-13 93 Certified By:_

SRC ENG:	INEERS, INC.
00, 001B, 011B	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
MDCM DUDGO.	New Iberia, La.
IEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD407021
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 7.0 min.
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT UT	LIZED	FOR	TEST
Type: <u>Metallo</u> c	ıraph			
Manufacturer:	Olympus			
Serial No.:	502796			
Last Servicing:	December,	1992		
IPC Tob We				

SRC Job No. 92-352

Certified By: Im Pressel Date: 10-13 93

GLOBAL12.MAC

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME: Global Divers New Iberia, La.
TEST PERFORMED: Macro Etch on Timing Beads on Plate P.O. #GD407021 3/4" A537 Class 1 Mat'l.(.462 C.E.) 7.5 min.
Specification: In accordance with AWS D3.6
WACDO MIROT DAGGE
MACRO TEST RESULTS:
HAZ Examined at 100% Magnification. There was no evidence of any cracking.
EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992
SRC Job No. 92-352
Certified By: Tw finance Date: 10:13-93

GLOBAL12.MAC

	INEERS, INC. 6 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-57
COMPANY NAME:	Global Divers
	New Iberia, La.
EST PERFORMED:	Macro Etch on Timing Beads on Plate
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 8.0 min.
pecification:	In accordance with AWS D3.6
	MACRO TEST RESULTS:
777	
HAZ Examined	at 100% Magnification.
	garrication.
	evidence of any cracking.
	evidence of any cracking.
There was no	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST
There was no	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST lograph
Type: Metal Manufacturer:	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST lograph Olympus
Type: Metal Manufacturer: Serial No.:	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST lograph Olympus 502796
Type: Metal Manufacturer: Serial No.:	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST lograph Olympus
Type: Metal Manufacturer: Serial No.:	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST lograph Olympus 502796 B: December, 1992

GLOBAL12.MAC

SRC ENG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD407021 3/4" A537 Class 1 Mat'l.(.462 C.E.) 8.5 min.
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.
There was no evidence of any cracking.

Γ	
	EQUIPMENT UTILIZED FOR TEST
	Type: Metallograph
	Manufacturer: Olympus
	Serial No.: <u>502796</u>
L	Last Servicing: December, 1992
SF	RC Job No. 92-352
Ce	ertified By: Tim Grund Date: 10-13-93

GLOBAL 12 . MAC

03/-38IN, 3IIN	INEERS, INC. 5 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-571
COMPANY NAME:	Global Divers New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD407021 3/4" A537 Class 1 Mat'l.(.462 C.E.) 9.0 min.
Specification:	In accordance with AWS D3.6
	MACRO TEST RESULTS:
HAT Permissa	
	at 100% Magnification.
	at 100% Magnification. evidence of any cracking.
	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST
There was no	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST
Type: Metal	evidence of any cracking. EQUIPMENT UTILIZED FOR TEST

Date: 10-13-93

GLOBAL12.MAC

Certified By: Imm Brown

SRC ENGI	NEERS INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	
vu	New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate
	P.O. #GD407021
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 9.5 min.
Specification:	In accordance with AWS D3.6
	MACRO TEST RESULTS:
HAZ Examined	at 100% Magnification.
There was no	evidence of any cracking.
incic was no	evidence of any cracking.
	EQUIPMENT UTILIZED FOR TEST
Type: Meta	llograph
Manufacturer	: Olympus
Serial No.:	502796
Last Servicin	ng: <u>December, 1992</u>
SRC Job No.	92-352

Date: 10-13-93

GLOBAL12.MAC

Certified By: Two Pressed

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	
-	New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD407021
•	3/4" A537 Class 1 Mat'l.(.462 C.E.) 10.0 min.
~	
Specification:	In accordance with AWS D3.6
	MACRO TEST RESULTS:
mag Descriped	at 1887 Varmisination
Denimbka kan	at 100% Magnification.
There was no	evidence of any cracking.
F	
	EQUIPMENT UTILIZED FOR TEST
Type: Meta	llograph
Manufacturer	: Olympus
Serial No.:	502796
Last Servici	ng: <u>December, 1992</u>
SRC Job No	92-352

GLOBAL12.MAC

Certified By: Im Sound Date: 10-13-93

TEMPER BEAD TIMING WELDMENTS

Ten Minutes to Sixty Minutes

Ten Minute Intervals

No HAZ Cracks

SRC ENGI	NEERS, INC.
	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
•	Macro Etch of Bead on Plate P.O. #GD406534 A537 C1.1, (10 min.)
Specification:	In accordance with AWS D3.6

HAZ Examined at 100X Magnification.

No evidence of any cracking was found.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch of Bead on Plate
	P.O. #GD406534
	A537 Cl.1, (20 min.)
	-
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

No evidence of any cracking was found.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

Certified By: Tim Dane: 8-3 93

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
	Global Divers
_	New Iberia, La.
	Macro Etch of Bead on Plate
	P.O. #GD406534
_	A537 C1.1, (30 min.)
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

No evidence of any cracking was found.

	EQUIPMENT UTILIZED FOR TEST
Type: Metallo	graph
Manufacturer:	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

Certified By: Im Paul Date: 8-3 13

SRC ENGI	NEERS, INC.
	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
	Macro Etch of Bead on Plate P.O. #GD406534 A537 Cl.1, (40 min.)
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

No evidence of any cracking was found.

	EQUIPMENT UTILIZED FOR TEST	
Type: <u>Metallo</u>	raph	
Manufacturer:	Olympus	
Serial No.:	502796	
Last Servicing:	December, 1992	

Certified By: Im Am Date: 8-3-93

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch of Bead on Plate
	P.O. #GD406534
	A537 C1.1, (50 min.)
Specification:	In accordance with AWS D3.6

HAZ Examined at 100X Magnification.

No evidence of any cracking was found.

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Metallo</u>	graph
Manufacturer: _	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

Certified By: 1. Date: 8.3.43

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
_	New Iberia, La.
TEST PERFORMED:	Macro Etch of Bead on Plate
	P.O. #GD406534
	A537 Cl.1, (60 min.)
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

No evidence of any cracking was found.

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Metallo</u>	graph
Manufacturer: _	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

Certified By: ______ Date: 8-3-73

TEMPER BEAD TIMING WELDMENTS

One Hour to Two Hours
Thirty Minute Intervals
No HAZ Cracks

SRC ENGI	NEERS, INC.				
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710				
COMPANY NAME: Global Divers New Iberia, La.					
•	New Ideila, Ed.				
TEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD106997				
. -	3/4" A537 Class 1 Mat'l.(.462 C.E.) 1.0 Hrs.				
Specification:	In accordance with AWS D3.6				
	MACRO TEST RESULTS:				
·					
HA7 Framinod	at 100% Magnification.				
•					
There was no	evidence of any cracking.				
	EQUIPMENT UTILIZED FOR TEST				
Type: Metal	lograph				

Manufacturer: _	Olympus	
Serial No.:	502796	
Last Servicing:	December, 1992	

SRC Job No. 92-352

Certified By: Jim Brund Date: 10-21-93

GLOBAL13.MAC

SRC ENGI	NEERS, INC. * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710				
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * PAX (318) 837-5710				
COMPANY NAME:	Global Divers New Iberia, La.				
TEST PERFORMED: Macro Etch on Timing Beads on Plate					
-	P.O. #GD106997 3/4" A537 Class 1 Mat'l.(.462 C.E.) 1.5 Hrs.				
-					
Specification:	In accordance with AWS D3.6				
	MACRO TEST RESULTS:				
HAZ Examined	at 100% Magnification.				
There was no	evidence of any cracking.				
	EQUIPMENT UTILIZED FOR TEST				
Type: Metal	Llograph				
Manufacturer	: Olympus				
Serial No.:	502796				
Last Servicin	ng: <u>December, 1992</u>				
SRC Job No.	92-352				

GLOBAL13.MAC

Certified By: Tim Because

3. 3010, 31100	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-57
OMPANY NAME:	Global Divers
-	New Iberia, La.
EST PERFORMED:	Macro Etch on Timing Beads on Plate
	P.O. #GD106997
-	3/4" A537 Class 1 Mat'l.(.462 C.E.) 2.0 Hrs.
pecification:	In accordance with AWS D3.6
	Mana man and an
	MACRO TEST RESULTS:
U37 P	1007
TAY EXAMINED	at 100% Magnification.
There was no	evidence of any cracking.
	3
	·
	EQUIPMENT UTILIZED FOR TEST
Type: Metal	lograph
	Olympus
Manufacturer:	OTYMPUS
Manufacturer: Serial No.: _	502796

GLOBAL13.MAC

Certified By: Im Record Date: 10-21-93

TEMPERED BEAD TIMING WELDMENTS

Two and a-half Hours to Four Hours

Thirty Minute Intervals

all with HAZ Cracks

DRC DNG1	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate
	P.O. #GD106997
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 2.5 Hrs.
	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was evidence of typical Hydrogen Cracking
in the HAZ of the base metal under the Wet Primary Bead.

	EQUIPMENT (UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:		er, 1992		

JAC	JOD	NO.	92-352		
/" co sund	. : 4: .	س <i>دا</i> ا	i in Part		74 - 21 - 9 2
Cert	ifie	G B	The state of the s	Date:	10-21-93

GLOBAL13.MAC

SRC ENG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
	New IDetta, Ea.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate P.O. #GD106997
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 3.0 Hrs.
Specification:	In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 100X Magnification.

There was evidence of typical Hydrogen Cracking
in the HAZ of the base metal under the Wet Primary Bead.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	per, 1992		

SRC ENGI	NEERS, INC.							
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710							
COMPANY NAME:	Global Divers							
	New Iberia, La.							
TEST PERFORMED:	rest Performed: Macro Etch on Timing Beads on Plate							
	P.O. #GD106997							
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 3.5 Hrs.							
Specification:	cation: _In accordance with AWS D3.6							
	_MACRO TEST RESULTS:							
HAZ Examined	at 100% Magnification.							
There was ev	idence of typical Hydrogen Cracking							
in the UNC of	f the been mately under the vist with							
In the haz o	f the base metal under the Wet Primary Bead.							
	EQUIPMENT UTILIZED FOR TEST							
Type: Meta	llograph							
Manufacturer	: Olympus							
Serial No.:	502796							
Last Servicin	ng: December, 1992							
SRC Job No.	92-352							

Certified By: Im Omezal Date: 10-21-93

SKC ENG	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Timing Beads on Plate
•	P.O. #GD106997
	3/4" A537 Class 1 Mat'l.(.462 C.E.) 4.0 Hrs.
	In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 100% Magnification.

There was evidence of typical Hydrogen Cracking in the HAZ of the base metal under the Wet Primary Bead.

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Metallo</u>	graph
Manufacturer: _	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

JAC	JOD	NO.		92-352	 	
Cert	ifie	ed E	3y:	R	Date:	:0-21-43

GLOBAL13.MAC

Global Divers & Contractors, inc. Sheet <u>1</u> of <u>2</u> W/O No. <u>ED-008-93</u>

MATERIALS JOINING WORK REPORT Part 1 MTB Toe-to-Toe Distance 3/32"

Location	GLOBAL D	IVERS - PORT	OF IBERIA	Contra	at No. 9	1-M-4346
						Gradein. Diair
Process	SMAW	Current/F	Polarity <u>CC/D</u> 0	CEP/PULSE	Joint Type _V	-GROOVE (8") Position 3G
Water Depth_	33'	Dry	W	et <u>X</u>		
Welding Varia	bles:					
RF&C	PASS	DIA.	AMPS	VOLTS	IP.M.	REMARKS
ROOT	1	1/8"	150 - 160	28 - 30	5.7	Temper beads were deposited on all
ROOT	2	1/8*	150 - 160	28 - 30	5.3	beads that tied into the base metal.
ТВ	AVG	1/8"	155	30	8.9	Toe-to-toe distances were 3/32".
FILL	AVG	1/8"	155	30	8.7	Number of passes -32. Electrodes
CAP	AVG	1/8"	155	30	8.9	consumed -43. Welding time 45
						minutes.
Welder:	Darryl R.	Phillips				Date: 6-1-93
Welding Joir	nt Sketch:				Welding Tech	niques:
					Stringer Be	eads with all passes downhill.
	75*	i an•				
	7		L	`		
	/			1/8.		
: •		3/8.	3/16. J			

Sheet 2 of 2 W/O No. ED-008-93

Tension Tests: (Reduced Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT ULTI	WATES. YIELD	s. ELONGATION	FAILURE
1				
2				

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry:

	CE	C	Min	Р	9	SI	Ni	Cr	Mo	Cu	V	Cb	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): Vickers 10 kg, combined test results on four macros.

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	176	180
HAZ (MAX)	369	345
HAZ (AVG)	312	241
WM (MAX)	207	260

Purpose (οf	Test:
-----------	----	-------

Determine maximum acceptable distance between toes of primary beads and toes of

temper beads.

Remarks & Evaluation:

Charpy V-Notch HAZ impacts at 28° F averaged 47 ft. lbs. with 75% shear.

No HAZ cracks at 100X.

	C.E. Grubbs	South	Date:	6-1-93	Rev:	
--	-------------	-------	-------	--------	------	--

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/32" - #1 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

Type:Tukon Model LR Microhardness Tester Manufacturer:Wilson Serial No.:LR-997	EQUIPMENT UTILIZED FOR TEST
Serial No.: LR-997	Type: Tukon Model LR Microhardness Tester
	Manufacturer: Wilson
Took (Inlike-setters and Inlike-setters)	Serial No.: LR-997
Last Calibration: January 18, 1993	Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By: _____ Da

Date: 6-14-93

Reviewed By: Sooph DOUL Date: 06-14-93

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/32" - #2 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By: Time Hour Date: 6-14-93

Reviewed By: Scape Date: 06-19-27

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers
New Iberia, La.

TEST PERFORMED:

Vickers 10kg load hardness test on weld sample

3/32" - #3 (P.O. #GD106384) 3G - With T.B.

Specification:

In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By: Im Pare Date: 6-14-93

Reviewed By: Stoph (Value Date: 06-19-93

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 Global Divers COMPANY NAME: New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample 3/32" - #4 (P.O. #GD106384) 3G - With T.B. Specification: In accordance with AWS D3.6 Vickers 10kg HARDNESS TEST DATA: 260 207 212 £ 262 276 263 295 193 198 212 235 244 198 212 255 173 169 250 175 181 218 166 260 199 212 230 247 240 Note: HAZ Examined at 5X, 40X, & 100X Magnification. EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Type: _ Manufacturer: Wilson Serial No.: LR-997

Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By: Tm Paral Date: 6-14-93

Reviewed By: Some Allow Date: \$\infty\$ Date: \$\

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * (318) 837-3810, 837-3819 STEPHEN FAX (318) 837-5710 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

	7-93	P.O. No	GD106384	
Company:Globa	al Divers & Cont	ractors, Inc.		
Test: Charpy	/ V-Notch Impact	Test per ASTI	MA-370, E-23	
Test Performed or	n: <u>3/32" labele</u>	<u>d weld</u>		
Size of Specimens	: <u>Full Size</u>	(10mm x 10mm x	c 55mm)	
_				
Test Temperature:	: <u>28°F</u>			

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS							
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL				
	ENERGY	SHEAR	EXPANSION				
	ft - lbf	FRACTURE	(mils)				
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	41	85	39				
	41	70	42				
	53	85	45				
	47	70	46				
	54	70	43				

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

Date: 6-8-93

SRC Engineers, Inc.

Reviewed By:.

Date: _

GLOBAL1.CHP

MATERIALS JOINING WORK REPORT Part 1 MTB Toe-to-Toe Distance 1/8" Sheet 1 of 2 W/O No. <u>ED-009-93</u>

Location GLOBAL DIVERS - PORT OF IBERIA Contract No. 91-M-4346									
Mat'l (1)/ It/Slab No Thick	A 537 79006-12 5/8"	Grade	Cl 1	in.	Mat'l (2) Ht./Slab No Thick	Gradein. Diai			
Electrode (AW	S) <u>E 6013 A</u>	5.1]	N Program E	x 7 Mi	. Proprietary	Ctry			
rocess	SMAW	Current/	Polarity <u>CC/DC</u>	CEP/PULSE	Joint Type <u>V</u> -	GROOVE (8") Position 3G			
Vater Depth _	33'	Dry	We	et <u>X</u>	Andrews and the second				
Velding Variat	oles:								
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS			
ROOT	1	1/8"	150 - 160	28 - 30	6.2	Temper bead was deposited on all			
ROOT	2	1/8"	150 - 160	28 - 30	6.1	beads that tied into the base metal.			
ТВ	AVG	1/8*	155	30	9.1	Toe-to-toe distance was 1/8".			
FILL	AVG	1/8"	155	30	8.4	Number of passes -34. Electrodes			
CAP	AVG	1/8"	155	30	8.9	consumed -41. Welding time -54			
						minutes.			
Welder:	Darryl R.	Phillips	·	······································		Date: 6-1-93			
Welding Joir	nt Sketch:				Welding Tech	niques:			
					Stringer Be	ads with all passes downhill.			
	32*	► → 3c·/		••					
			3/16-]						
	-	d - 378.							

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-009-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1					
2					
3					
4					

Chemistry:

	CE	C	Mn	Р	9	SI	NI	Cr	Mo	Cu	٧	Cb	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): Vickers 10 kg, combined test results on four macros.

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	177	172
HAZ (MAX)	340	361
HAZ (AVG)	269	264
WM (MAX)	212	212

Purpose of Test:

Determine maximum acceptable distance between toes of primary beads and toes of

temper beads.

Remarks & Evaluation:

Charpy HAZ V-Notch impacts at 28° F averaged 49 ft. lbs. with 85% shear.

No HAZ cracks at 100X.

		///	110				
Bv:	C.E. Grubbs	63820	hela	Date:	6-1-93	_ Rev:	

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample
1/8" - #1 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 18, 1993</u>

SRC Job No. _____ 92-352

Certified By: In Band Date: 6-14-93

Reviewed By: 50071 Color Date: 06-14-93

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

1/8" - #2 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration:

SRC Job No. ___

92-352

Certified By:

Date: 6-14-93

Reviewed By:

Date: <u>66-18-93</u>

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample
1/8" - #3 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

	EQUIPMENT UTILIZED FOR TEST
Type:	Tukon Model LR Microhardness Tester
Manufac	cturer: Wilson
Serial	No.: <u>LR-997</u>
Last Ca	alibration: January 18, 1993

SRC Job No. 92-352

Certified By: Time Board Date: 6-14-93

Reviewed By: Sept Alele Date: 06-14-93

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample
1/8" - #4 (P.O. #GD106384) 3G- With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST									
Type:Tukon Model LR Microhardness Tester									
Manufacturer: Wilson									
Serial No.: LR-997									
Last Calibration: January 18, 1993									

SRC Job No. 92-352

Certified By: _____ Date: 6

Date: 6 - 14 - 93

Reviewed By: South College Date: 06-14-93

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:		07-07-9	93	_ P.	ο.	No.		GD1063	384	
Compa	ny:	Global	Divers & C	ontracto:	rs,	Inc.				
Test:		Charpy V	<i>I-Notch Imp</i>	<u>act Test</u>	ре	r AST	M.	A-370,	E-23	
Test	Perf	ormed on:	<u>1/8" lab</u>	eled weld	d					
Size	of Sp	pecimens:	Full Si	<u>ze (10mm</u>	х	10mm_	X_	55mm)		
Test	Tempe	erature: _	28°F							

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS											
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL								
	ENERGY	SHEAR	EXPANSION								
	ft - lbf	FRACTURE	(mils)								
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	42	85	48								
	52	85	63								
	68	85	55								
	42	85	38								
	54	85	52								

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: <u>85900</u>
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

SRC Engineers, Inc.

Date: _

Reviewed By:

Date: <u>&- 08-23</u>

GLOBAL1.CHP

Global Divers & Contractors, Inc. Sheet 1 of 2 W/O No. ED-010-93

MATERIALS JOINING WORK REPORT Part 1 MTB Toe-to-Toe Distance 3/16"

ocation	GLOBAL DIV	VERS - PORT	OF IBERIA	Contra	⊅ No. 91	-M-4346
						Grade in. Dia in in.
	33'					-GROOVE (8") Position 3G
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
ROOT	1	1/8"	150 - 160	28 - 30	6.2	Temper bead was deposited on all
ROOT	2	1/8*	150 - 160	28 - 30	6.1	primary beads that tied into the base
В	AVG	1/8"	155	30	8.9	metal . Toe-to-toe distance was
FILL	AVG	1/8*	155	30	8.6	3/16". Number of passes -34.
CAP	AVG	1/8"	155	30	8.9	Electrodes consumed -41. Welding
						time -54 minutes.
Welder:	Darryl R.	Phillips			Welding Tech	Date: <u>6-1-93</u> Iniques:
Wooling 50					Stringer Be	eads with all passes downhill.
	30.	30.	3/16* -	1/8-		

Sheet 2 of 2 W/O No. <u>ED-010-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) ______N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	*RADIUS	RESULTS
1					
2					
3					
4					

Chemistry:

Purpose of Test:

		CE	С	Mn	Р	S	SI	MI	Cr	Mo	Cu	٧	СЬ	Nb	Al
11	CTR														
	LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): Vickers 10 kg, combined test results on four macros.

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	168	170
HAZ (MAX)	332	316
HAZ (AVG)	256	255
WM (MAX)	286	212

Remarks & Evaluation:	Charpy HAZ V-Notch impact test results at 28° F averaged 50 ft. lbs. with 80	0% shear.

No HAZ cracks at 100X.

By: C.E. Grubbs Flex Let Date: 6-1-93	Rev:
---------------------------------------	------

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/16" - #1 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Date: 6 - 12 - 5

Reviewed By:

Vella

Date: 06-14-93

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/16" - #2 (P.O. #GD106384) 3G - With T.B.

Specification: <u>In accordance with AWS D3.6</u>

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By: Im Bound Date: 6-14-93

Reviewed By: Date: 06.14-83

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/16" - #3 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Reviewed By:

Certified By: Im Paral Date: 6-14-93

Date: _06-19-83

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

3/16" - #4 (P.O. #GD106384) 3G - With T.B.

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

Note: HAZ Examined at 5X, 40X, & 100X Magnification.

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: <u>LR-997</u>
Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Certified By: 1m Barrel Date: 6-14-93

Reviewed By: Soph a (Volle Date: 06-14-93

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:		07-07-9	93		P.0	. No		GD106	384	
Compa	any:	Global	Divers	& Cont	ractor	s, I	nc.	·	***************************************	***************************************
Test:	***************************************	harpy V	V-Notch	Impact	Test	per	ASTM	A-370,	E-23	****
Test	Perform	ed on:	3/16"	<u>labele</u>	<u>d weld</u>					
Size	of Spec	imens:	Full	Size	(10mm	x 10	mm x	55mm)		
Test	Tempera	ture: _	28°)	<u>E</u>		-			 	

This Certificate may not be altered, deleted from, published and/or used except in full.

RI	ESULTS		
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL
	ENERGY	SHEAR	EXPANSION
	ft - lbf	FRACTURE	(mils)
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	48	70	57
	47	85	60
	56	85	52
	45	70	50
	62	85	55

EQUIPMENT UTILIZED FOR TEST
Type: _ Charpy V-Notch Impact Tester
Manufacturer: <u>Tinius Olsen</u>
Serial No.: <u>85900</u>
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

Date: 6-8-93

SRC Engineers, Inc.

Reviewed By: Se

Date: 06 - 08 - 93

GLOBAL1.CHP

Sheet <u>1</u> of <u>2</u> W/O No. <u>ED-001-94</u>

MATERIALS JOINING WORK REPORT MTB WELD FOR REDUCTION OF HAZ TOE HARDNESS, LEVEL 2 HEAT INPUT

Location	Global Diver	rs & Contrctors,	Inc. Port of It	eria	Contract	No. 91-M-4346
Thick	3/4"	Gra		in.	Thick	Gradeiin. Diai
Electrode (A)	WS) <u>E6013</u>	A.51	TN Program	Ex 7 Mf	r. Proprietary	Batch No. 3201
Process	SMAW	_ Current/Pola	urity <u>CC/DC</u> E	<u>P</u> Jo	int Type Fillet	Position Vertical
Water Depth	33'	Dry	W	/etx_	-	
Welding Varia	ables:					
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
Root	1 1	1/8"	170	30	9.0	Weld was restrained by an opposing
Fill	10	1/8"	170	30	9.2	wet fillet weld i.e., welder deposited
Cap/TB	4	1/8"	170	30	9.5	weld passes on alternate sides of
						flange plate.
			·······			
Welder:	Darryl Phillip	os .				Date: <u>February 10,1994</u>
Welding Join	t Sketch:				Maldina Toohn	····
			BEADS		Welding Techn	·
	CE-462	The second secon			Multiple tempe stringer beads	r bead technique was used with and all passes downhill.
		3 10 10 10 1 1 2 5 9				
	CE<.40		or delication of the state of t			
1/87 :	DIA ELECTRODES USE	D FOR ALL BEADS				

Sheet <u>2</u> of <u>2</u> W/O No. ED-001-94

Tension Tests: (Reduced Section/All-Weld-Metal) _____N/A

11		Earl-1-1	ELONGATION	FAILURE
1				
2				

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3			**************************************		
4					

Chemistry: A 537 Class 1

	CE	С	Mn	P	S	SI	NI	Cr	Mo	Cu	γ	Ср	Nb	Al
CTR	,													
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (10 kg Vickers): Fillet weld on one side. Heat affected zone only.

LOCATION	LEFT-SIDE	RIGHT SIDE		
BASE METAL (AVG.)	N/A	Without Tempering		
HAZ (MAX)	Toe 478 Midpoint 320 Root 282	Toe 482 Midpoint 327 Root 306		
AZ (AVG)	Toe 410 Midpoint 281 Root 267	Toe 463 Midpoint 293 Root 289		
WM (MAX)	N/A	N/A		

Purpose of Test:

Reduce the HAZ hardness at the toe of the weldment to the Vickers 10 kg 325 maximum specified by AWS D3.6 for Class A (Dry) welds by progressively increasing temper bead heat input.

Remarks & Evaluation:

For this weld, calculated (see text of report) temper bead heat input was 32.2 kJ/in which was the second level of heat input of a series of five levels used for this set of tests. (For welds reported in the Jan. '94 Interim Report, the first level of heat input was 25.5 kJ/in). As shown in the above hardness report, the procedure produced some, but no significant, reduction in HAZ toe hardness.

Ву:	C.E. Grubbs	Date:	February 17, 1994	Rev:	

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material

One side - MTB with Level 2 Heat Input ←

One side - MTB with Level 3 Heat Input

Sample #1

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC Job No. ____

Certified By:

Date: 2-14-94

GLOBAL16.FIL

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material
One side - MTB with Level 2 Heat Input
One side - MTB with Level 3 Heat Input
Sample #2

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type: _ Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC	Job	No.		9	4-045		·····			
Cert	ifie	d By	y:	Tim	B		Date:	2	-/4	-9 ≠

GLOBAL15.FIL

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: <u>Global Divers</u>

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material

One side - MTB with Level 2 Heat Input -

One side - MTB with Level 3 Heat Input

Sample #3

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC Job No. 94-045

Certified By:_

_ Date: 2-/4-94

GLOBAL15.PIL

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material

One side - MTB with Level 2 Heat Input

One side - MTB with Level 3 Heat Input

Sample #4

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100%. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC Job No. _____94-045

Certified By: _

Date: 2-14-94

GLOBAL15.FIL

Sheet <u>1</u> of <u>2</u> W/O No. <u>ED-002-94</u>

MATERIALS JOINING WORK REPORT MTB WELD FOR REDUCTION OF HAZ TOE HARDNESS, LEVEL 3 HEAT INPUT

Location	Giodai Divers	s & Controtors,	inc. Port of ib	<u>ena</u>	Contract	No. 91-M-4346
Mat'l (1) Ht./Slab No	A537 79006	Gra in. Dia	de <u>Cl.1</u>	······································	Mat'l (2) Ht./Slab No.	Gradein. Diair
I NICK	3/4	in. Uia		in.	I nick	in. Diain
Electrode (AW	/S) <u>E6013</u>	A.51	TN <u>Program</u>	Ex 7 Mfr	. <u>Proprietary</u>	Batch No. <u>3201</u>
ProcessS	SMAW	_ Current/Pola	urity <u>CC/DCE</u>	<u>P</u> Joi	nt Type Fillet	Position Vertical
Water Depth _	33'	Dry	W	/et X		
Welding Variat	oles:					
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
Root	1	1/8"	170	30	8.6	Weld was restrained by an opposing
Fill	10	1/8"	170	30	9.0	wet fillet weld i.e., welder deposited
Cap/TB	4	1/8*	170-180	30-32	9.4	weld passes on alternate sides of
						flange plate.
				·		

Welder:	Damyl Phillip	os			***************************************	Date: February 10,1994
Welding Joint	t Sketch:	7 77	IEMPER BEADS		Welding Techi	niques:
	CE.482		2222 BEADS		•	er bead technique was used with and all passes downhill.
		7				
<u> </u>		3 10 10				
	CE<.40				•	
* /50	DIA ELECTRODES LE	SED FOR ALL BEADS	ئ ــــــــــــــــــــــــــــــــــــ			

Sheet 2 of 2 W/O No. <u>ED-002-94</u>

Tension Tests: (Reduced Section/All-Weld-Metal) _____N/A

SPECIMEN	ORIENTATION	ULTIMATE PSI.	YIELD PSI.	ELONGATION	FAILURE
1					
2					
<u> </u>					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry: A 537 Class 1

	CE	C	Mn	Р	S	SI	Ni	Cr	Mo	Cu	V	Ср	Nb	Ai
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (10 kg Vickers): Fillet weld on one side. Heat affected zone only.

LOCATION	LEFT-SIDE	RIGHT SIDE
BASE METAL (AVG.)	N/A	Previous Heat Input Level 2
HAZ (MAX)	Toe 478 Midpoint 272 Root 299	Toe 478 Midpoint 320 Root 282
HAZ (AVG)	Toe 439 Midpoint 267 Root 274	Toe 410 Midpoint 281 Root 267
WM (MAX)	N/A	N/A

Purpose of Test:

Reduce the HAZ hardness at the toe of the weldment to the Vickers 10 kg 325 maximum specified by AWS D3.6 for Class A (Dry) welds by progressively increasing temper bead heat input.

Remarks & Evaluation:

For this weld, calculated (see text of report) temper bead heat input was 34.6 kJ/in which was the third level of heat input of a series of five levels used for this set of tests. Previous and second level of temper bead calculated heat input was 32.2 kJ/in. As shown in the above hardness report, the increased calculated heat input did not cause any reduction in hardness.

The explanation of this is probably related to the fact that the calculated heat input formula does not include some essential variables which are controlled by the welder.

By: C.E. Grubbs Date: February 17, 1994 Rev:
--

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u>Global</u> Divers New Iberia, La. TEST PERFORMED: Vickers hardness test on Double Fillet Weld 3/4"-A537 welded to 3/4"-A537 Material One side - MTB with Level 2 Heat Input One side - MTB with Level 3 Heat Input 🛹 Sample #1 P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC	Job	No.	94-045		
Cert	ifie	d By	: Im Brund	Date:	2-14-94

GLOBAL16.FIL

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED:

Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material

One side - MTB with Level 2 Heat Input

One side - MTB with Level 3 Heat Input

Sample #2

P.O. #GD107497

Specification:

In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer:Wilson
Serial No.: LR-997
Last Calibration:January 10, 1994

SRC Job No.	94-045	
Certified By:	Tim Brand	
	CLOBALIS.FIL	

SRC ENGINEERS, INC.
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME:

Global Divers

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material

One side - MTB with Level 2 Heat Input

One side - MTB with Level 3 Heat Input

Sample #3

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994

SRC Job No. 94-045	
--------------------	--

Certified By:

Date: 2-/4-94

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Double Fillet Weld

3/4"-A537 welded to 3/4"-A537 Material One side - MTB with Level 2 Heat Input

One side - MTB with Level 3 Heat Input

Sample #4

P.O. #GD107497

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.:LR_997
UCLIAI NO.:
Last Calibration: January 10, 1994
January 10, 1994

SRC Job No. 94-045

Certified By: /m

Date: 2-14-94

GLOBAL15.FIL

Sheet __1_ of _2 W/O No. _ED-003-94

MATERIALS JOINING WORK REPORT MTB WELD FOR REDUCTION OF HAZ TOE HARDNESS, LEVEL 4 HEAT INPUT

Location	Global Divers	& Contrctors,	Inc. Port of Ib	<u>eria</u>	Contract	No. 91-M-4346		
Thick	79006 3/4"	Gra in. Dia A.51		in.	Ht./Slab No. Thick 5/8'	36 < CE .40 Gradein. Diain Batch No. 3201		
Process	SMAW	_ Current/Pola	urity CC/DCE	:P Joir	nt Type Fillet	Position Vertical		
		Dry						
Welding Varia	ıbles:							
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS		
Root	1	1/8"	170	30	8.7	Wet fillet weld restrained by 1/2" x 4"		
Fill	10	1/8"	170	30	9.2	bar welded to top of 5/8" flange plate		
Cap/TB	4	1/8"	170-180	30-32	8.8	and to the edge of the 3/4" base plate		
-								
Welder:	Darryl Phillip	s				Date: <u>February 15, 1994</u>		
Welding Joir	nt Sketch:				Welding Techr	niques:		
	CE.482		TEMPER BEADS		Multiple temper bead technique was used with stringer beads and all passes downhill.			
		7 3 3 10 10 1 1 1 2 3 5 9						
	CE<.40							
1,	/6" DIA ELECTRODES US	SED FOR ALL BEADS						

Sheet _ 2_ of _ 2 W/O No. ED-003-94

Tension Tests: (Reduced Section/All-Weld-Metal) _____N/A

SPECIMEN	ORIENTATION	ULTIMATE PSI.	YIELD PSI.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1	The state of the s				
2					
3					
4					

Chemistry: A 537 Class 1

	CE	C	Mn	Ρ	S	SI	NI	Cr	Мо	Cu	٧	Сь	Nb	Al
CTR	-													
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (10 kg Vickers): Fillet weld on one side. Heat affected zone only.

LOCATION	LEFT-SIDE	RIGHT-SIDE
BASE METAL (AVG.)	N/A	Previous Heat Input Level 3
HAZ (MAX)	Toe 355 Midpoint 282 Root 267	Toe 478 Midpoint 272 Root 299
HAZ (AVG)	Toe 324 Midpoint 267 Root 251	Toe 439 Midpoint 267 Root 274
WM (MAX)	N/A	N/A

Purpose of Test:

Reduce the HAZ toe hardness of the weldment to the Vickers 10 kg 325 maximum specified by AWS D3.6 for Class A (Dry) welds by progressively increasing the temper bead heat input.

Remarks & Evaluation:

For this weld, calculated temper bead heat input was 37.0 kJ/in, which was the fourth level of heat input of a series of five levels used for this set of tests. Previous and third level of temper bead calculated heat input was 34.6 kJ/in. As shown in the hardness report above, this level of heat input resulted in, for practical purposes, a totally acceptable level of hardness. However, two of the three HAZ toe hardness (332 and 355) exceed our goal of 325 maximum.

By: C.E. Grubbs	Date:	February 22, 1994	Rev	
-----------------	-------	-------------------	-----	--

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers hardness test on Single Fillet Weld

3/4"-A537 welded to 5/8"-C.S. Material

MTB with Level 4 Heat Input

Sample #L1-1

P.O. #GD107513

Specification: <u>In accordance with AWS D3.6</u>

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100X. No cracks were found.

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Tukon</u>	Model LR Microhardness Tester
Manufacturer:	Wilson
Serial No.:	LR-997
Last Calibrati	on: January 10, 1994

SRC Job No. 94-045

Certified By:__

Date: 2-18-94

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Single Fillet Weld
3/4"-A537 welded to 5/8"-C.S. Material
MTB with Level 4 Heat Input
Sample #L1-2
P.O. #GD107513

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ examined at 100%. No cracks were found.

SRC	Job	No.	9.	<u>4-045</u>		
Cert	ifie	ed By	y: <u>Im</u>	Jan.	Date:_	2-18-94

SRC ENGI	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710								
037-3010, 31100	" HARAIBILE, HA 70393-1100 " PAZ (318) 837-3710								
COMPANY NAME:	Global Divers New Iberia, La.								
TEST PERFORMED:	Vickers hardness test on Single Fillet Weld 3/4"-A537 welded to 5/8"-C.S. Material MTB with Level 4 Heat Input Sample #L1-3 P.O. #GD107513								
Specification: In accordance with AWS D3.6									
HARDNESS TES	T DATA: Vickers 10kg								
A537 284 282 252 252 L1-3 A537 A537 RAZ examined at 100X. No cracks were found.									
	EQUIPMENT UTILIZED FOR TEST								
Type: <u>Tukon</u>	Model LR Microhardness Tester								
Manufacturer:	Wilson								
Serial No.: _	LR-997								
Last Calibrat	ion: <u>January 10, 1994</u>								

Sheet 1 of 2 W/O No. <u>ED-004-94</u>

MATERIALS JOINING WORK REPORT MTB/HALF-BEAD WELD FOR REDUCTION OF HAZ TOE HARDNESS, LEVEL 5 HEAT INPUT

						No. 91-M-4346
Ht./Slab No	79006 3/4"	in. Dia		in.	Ht./Slab No. Thick <u>5/8</u> "	36 < CE .40 Gradein. Diain. Batch No. 3201
	33'		arity <u>CC/DCE</u>			Position Vertical
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
Root	1	1/8"	170	30	8.8	Wet fillet weld was restrained by
Fill	9 -	1/8"	170	30	9.2	1/2" x 4" bar welded to top of 5/8"
тв .	1	1/8"	170	30	9.1	flange plate and to the edge of the
Half TB	2	3/32"	130	30	8.0	3/4" base plate.
Сар	4	1/8"	170	30	10.1	
Welder:	Darryl Phillip	S				Date: February 15, 1994
Welding Joir	nt Sketch:				Welding Tech	niques:

EXCEPT 3/32" DIA USED FOR PASSES 8 AND 13.
PASSES 7 AND 12 GROUND DOWN TO THALF-BREADS*

The multiple temper bead wet welding technique was employed as usual with downhill stringer beads. However, after filler beads/passes were deposited, passes 8 and 13 (See Fig 2) were ground down to approximately one-half thickness and retempered with 3/32" 0 welding electrodes.

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-004-94</u>

Tension Tests: (Reduced Section/All-Weld-Metal)

N/A

SPECIMEN	ORIENTATION	ULTIMATE PSI.	YIELD PSI.	ELONGATION	FAILURE
1					111111111111111111111111111111111111111
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry: A 537 Class 1

	CE	С	Mn	Р	s	SI	NI	Cr	Mo	Cu	٧	СЪ	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (10 kg Vickers): Fillet weld on one side. Heat affected zone only.

LOCATION	LEFT-SIDE	RIGHT-SIDE
BASE METAL (AVG.)	N/A	Previous Level 4 Heat Input
HAZ (MAX)	Toe 300 Midpoint 297 Root 278	Toe 355 Midpoint 282 Root 267
HAZ (AVG)	Toe 282 Midpoint 279 Root 275	Toe 324 Midpoint 267 Root 251
WM (MAX)	N/A	N/A

Purpose of Test:

Reduce the HAZ toe hardness of the weldment to the Vickers 10 kg 325 maximum specified by AWS D3.6 for Class A (Dry) welds by progressively increasing the temper bead heat input.

Remarks & Evaluation:

A new wet welding technique was used for this weldment. The MTB technique was used to prevent HAZ hydrogen cracking plus, at the toe of the weld, a half-bead procedure was used to further reduce HAZ hardness. I.e., two weld beads/passes at the toe of the weld were ground down to approximately half-thickness and then retempered. Calculated heat input was comparatively low at 29.3 kJ/in. However, the actual heat input was significantly increased due to reduced thickness of the primary beads. This unique wet welding procedure made it possible to reduce the HAZ to less than the 325 specified by AWS D3.6 for Class A (dry) welds.

Ву:	C.E. Grubbs		Date:	February 22, 1994	Rev	
-----	-------------	--	-------	-------------------	-----	--

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: Global Divers New Iberia, La. TEST PERFORMED: Vickers hardness test on Single Fillet Weld 3/4"-A537 welded to 5/8"-C.S. Material MTB with Level 5 Heat Input Sample #L2-1 P.O. #GD107513 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg L2 - 1A537 252 277 HAZ examined at 100X. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 10, 1994</u>

SRC Job No. 94-045

Certified By: Im Med Date: 2-18-94

SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: Global Divers New Iberia, La. TEST PERFORMED: Vickers hardness test on Single Fillet Weld 3/4"-A537 welded to 5/8"-C.S. Material MTB with Level 5 Heat Input Sample #L2-2 P.O. #GD107513 Specification: In accordance with AWS D3.6

HAZ examined at 100%. No cracks were found.

Type:Tukon Model LR Microhardness Tester Manufacturer:Wilson Serial No.:LR-997	EQUIPMENT UTILIZED FOR TEST
	Type:Tukon Model LR Microhardness Tester
Serial No.: LR-997	Manufacturer: Wilson
	Serial No.: LR-997
Last Calibration: January 10, 1994	Last Calibration: January 10, 1994

SRC Job No. 94-045

Certified By: In Sand Date: 2-18-94

SRC ENGI	NEERS, INC.							
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710							
	, , , , , , , , , , , , , , , , , , , ,							
COMPANY NAME:	Global Divers							
•••	New Iberia, La.							
TEST PERFORMED:	ERFORMED: Vickers hardness test on Single Fillet Weld							
	3/4"-A537 welded to 5/8"-C.S. Material							
	MTB with Level 5 Heat Input							
	Sample #L2-3							
	P.O. #GD107513							
Specification:	In accordance with AWS D3.6							
HARDNESS TES	T DATA: Vickers 10kg							

HAZ examined at 100%. No cracks were found.

EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 10, 1994
SRC Job No. 94-045

GD106513

Certified By: ______

Appendix X

P.O. BOX	ENG	-							
	3110/	<u> </u>	ERS,	INC - LA 70593-1	1106	* FAX	(318) 8	37-571	
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.									
CERTIFICATE OF ANALYSIS									
Date: 4-02-93 P.O. No. GD105927									
l'est:	Company: Global Divers Cest: Reduced Section Tensile Test per ASTM A-376								
Pest Performed on: Sample V Welding Procedure This Certificate may not be altered, deleted from, published and/or used except in full.									
Th1	ls Certif	icate may not	: be altered, de	leted from, publi	sned and,	or used exce	abr tu rarr	i	
			All-Weld-M	etal Tensile T	est				
SPEC. LOAD AT YIELD TOTAL LOAD UNIT STR NO. DIA. AREA YIELD PT. STRENGTH LBS. PSI(Tensi							11		
V .500" .1964" 14,800 75,356 15,650 79,684						4			
DUCTILITY TEST									
DOCTIBITI TEST									
SPEC. N	SPEC. NO. GUAGE MARKS FINAL MARKS % ELONGATION								
V 2.000" 2.240" 12.0									
			REDUC'	rion of Ari	EA				
SPEC. N	NO.	ORIGINA	AL AREA	FINAL AR	ea 📗	% REDUC	CTION OF	AREA	
V	V .1964" .1576" 19.8								
		E(QUIPMENT	UTILIZED F	OR TE	ST			
Type:	Te	nsile Te	ester						
Manufa	actur	er: Re	eihle						
Seria	l No.	: R-	-1957						
Last (Calib	ration:	Januar	y 18, 1993					

SRC Job No	92-352		
Certified By:	Timethous	Date:	4-2-93
-	Tim J. Broussard		
Reviewed By: _	Ghad James	Date:	4-2-93

GLOBAL RED

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:	6-28-93			P.O.	No.	GD406178
Company: _	Global I)ivers				
rest:	Reduced	Section	Tensile	Test	per	AWS D3.6(1989)
Test Perfo	rmed on:		x 16" Und With T.B.		ter v	wet weld(Conf. weld)

This Certificate may not be altered, deleted from, published and/or used except in full.

REDUCED SECTION TENSILE TEST							
SPEC.	THK.	WIDTH	AREA	TOTAL LOAD	UNIT STRESS PSI (Tensile)		
T1	.670"	1.465"	.9816"	74,800	76,202		
Т2	.697"	1.464"	1.020"	80,200	78,627		

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Tensile</u>	Tester
Manufacturer: _	Reihle
Serial No.:	R-1957
Last Calibration	n: <u>January 18, 1993</u>

Certified By: Tim J. Broussard
SRC Engineers, Inc.

GLOBAL5.TEN

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAPAYETTE, LA 70593-1106 FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date: 06-29	-93	P.O. No.	GD406178	
	<u>l Divers & Cont</u>			
Test:Charpy	V-Notch Impact	Test per AS	STM A-300, E-23	
Test Performed on	: <u>3/4" x 16"Lg</u>	. Weld(Conf.	Weld) 1G Wetweld	
			With T.B.	
Size of Specimens	Full Size	<u>(10mm x 10mm</u>	n x 55mm)	
Test Temperature:	28°F	***************************************		

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS						
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL			
	ENERGY	SHEAR	EXPANSION			
	ft - lbf	FRACTURE	(mils)			
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone)	40	70	42			
	37	70	55			
	48	70	55			
	50	70	56			
H5 (Heat Affected Zone)	40	70	37			

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

Date: 6-29-93

SRC Engineers, Inc.

Reviewed By:

Date: ____06-29-93

GLOBAL5.chp

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date: 06-29- Company: Global	P.O. No. GD406178 Divers & Contractors, Inc.	
Test: Charpy	-Notch Impact Test per ASTM A-370, E-23 3/4" x 16"Lg. Weld(Conf. Weld) 'G	*****
Size of Specimens:	Full Size (10mm x 10mm x 55mm)	
Test Temperature:	28°F	***

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS						
SPECIMEN NUMBER	ABSORBED ENERGY ft - lbf	PERCENT SHEAR FRACTURE	LATERAL EXPANSION (mils)			
Wl(Weld)	32	100	20			
W2(Weld)	32	100	38 37			
W3(Weld)	33	100	36			
W4(Weld)	32	100	36			
W5(Weld)	32	100	49			

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

Date:

SRC Engineers, Inc.

Reviewed By:

Date: 6-29-93

GLOBAL5.chp

APPENDIX XII

ALLENDIA ALL
SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.
CERTIFICATE OF ANALYSIS
Date: 7-23-93 P.O. No. <u>GD406395</u>
Company: _ Global Divers & Contractors, Inc.
Test: Guided Bend Test per AWS D3.6-93
Test Performed on: Supplemental Weldments(Conf.)1G,2G,3G Welds on A537 Class 1 Material
Welders Name: Darryl Phillips
This Certificate may not be altered, deleted from, published and/or used except in full.
These Side Bend Tests were conducted to improve the bend
radii of these three weldments. Bend radii were progressively
reduced from 6T to 4T and 3 1/3T. The results were as follows:
Eight specimens 1G Position - No 6T's were bent Passed 2(4T's) Failed 6(4T's)
Eight specimens 2G Position - Passed 8(6T's) Passed 6(4T's) Failed 2(4T's) Passed 4(3 1/3T's) Failed 2(3 1/3T's)
Eight specimens 3G Position - Passed 8(6T's) Passed 7(4T's) Failed 1(4T) Passed 7(3 1/3T's)
All failures occurred in the weld metal
EQUIPMENT UTILIZED FOR TEST
Type: Guided Bend Tester
Manufacturer: CRC
Certified By: Tim J. Broussard SRC Engineers, Inc.
Reviewed By: Date: D7-23-23

END.CLO

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date: 7-01-93	P.O. No. <u>GD406178</u>
Company: <u>Global Divers & Contr</u>	actors, Inc.
Test:Guided Bend Test per .	AWS D3.6-93
Test Performed on: Weld Sample	3/4" X 8"Lg. (Conf. weld) 4G
Welders Name: Darryl Philli	With T.B.
This Certificate may not be altered, deleted	f from, published and/or used except in full.

GUIDED BEND TESTS SAMPLE TYPE & NUMBER RESULTS Side Bend(6T,4T,2T) S1 Satisfactory Side Bend(6T,4T) S2

Satisfactory Side Bend(6T,4T) S3 Satisfactory Side Bend(6T,4T,2T) S4 Satisfactory

EQUIPMENT UTILIZED FOR TEST Type: Guided Bend Tester Manufacturer: CRC

Certified By: Tim J. Broussard

SRC Engineers, Inc.

Reviewed By: Sept R () Date: 07-0/-23

GLOBAL6.BND

Global Divers & Contractors, Inc. Sheet <u>1</u> of <u>2</u> W/O No. <u>ED-016-93</u>

MATERIALS JOINING WORK REPORT Part 1 Confirmation Weld - Compare Charpy HAZ Notch Orientations

_ocationGL	OBAL DIVER	S - PORT OF	IBERIA	Contract	No. 91-	M-4346
		Grade _ n. Dia A5.1				Gradein. Diai
-	33'	Current/P				-Groove Position 3 G (8")
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
Root	1	1/8"	155 - 160	33 - 35	8.0	PPS - 150
Temper	*	1/8*	155 - 160	33 - 35	6.7	PW - 70%
Root	2	1/8*	155 - 160	33 - 35	8.0	Background - 30%
Temper	2	1/8"	155 - 160	33 - 35	6.7	41 Passes
Fill	3 - 35	1/8"	155 - 160	33 - 35	8.0	Weld time - 46 min.
Сар	36 - 41	1/8"	155 - 160	33 - 35	9.2	Used Multiple temper bead technique
Welder:	Darryl R. Phillip)S				Date:7-1-93
Welding Joir	nt Sketch:				Welding Tech	hniques:
					Stringer Bead	is. All passes downhill
	30.	3/8-	3/16-			

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-016-93</u>

TOTAL TOTAL TOTAL TOTAL CONTROL TOTAL TRANSPORT	Tension	Tests:	(Reduced	Section/All-Weld-Metal)	N/A
---	---------	--------	----------	-------------------------	-----

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
T					
2					
3					
4					

Chemistry:

	CE	С	Mn	P	S	SI	NI	Cr	Mo	Ċu	γ	СЬ	Nb	Al
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE		RIGHT SIDE
BASE METAL (AVG.)			
HAZ (MAX)		***************************************	
HAZ (AVG)			
WM (MAX)			

Purpose	Of	est:
----------------	----	------

Compare Charpy V-notch HAZ impact test results with notch oriented per AWS D3.6 Vs

parallel to HAZ.

Remarks & Evaluation:

For Charpy tests on this weldment, the notch was oriented per AWS D3.6. Average

results of tests on four macros were: Absorbed Energy, 44.7 ft. lbs. shear fracture, 85%.

Lateral expansion, 49.5 mils.

By: C.E. Grubbs Date: 7-1-93 Rev:	
-----------------------------------	--

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:07-08		P.O.	No.	GD406178	
Company: <u>Globa</u>	l Divers & Cont:	ractors	, Inc.		·····
Test: <u>Charpy</u>	V-Notch Impact	Test pe	er ASTM	A-370, E-23	
Test Performed on	: $3/4$ " x 8"Lq.	Weld(Co	onf. We	ld)3G-With T.B.	***************************************
	<u>60° Bevel Gro</u>	oove			
Size of Specimens	: Full Size	(10mm x	10mm x	55mm)	****
Test Temperature:	28°F				

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS								
SPECIMEN NUMBER	ABSORBED ENERGY ft - lbf	PERCENT SHEAR FRACTURE	LATERAL EXPANSION (mils)					
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	42 41 47 45 51	85 85 85 85 85	46 52 52 52 50 44					

EQUIPMENT UTILIZED FOR TEST						
Type: Charpy V-Notch Impact Tester						
Manufacturer: Tinius Olsen						
Serial No.: 85900						
Last Calibration:January 18, 1993						

Certified By:	Im Phus	Date:	7-8-93
	Tim J. Broussard		
	SRC Engineers, Inc.		
Reviewed By:	Kgrhal John	Date:	7-8-93

& Contractors, Inc.

Sheet 1 of 2 W/O No. <u>ED-017-93</u>

MATERIALS JOHNNG WORK REPORT Part 1 Confirmation Weld - Compare Charpy HAZ Notch Orientations

Ht./Siab No Thick	79006-12 3/ 4*	in. Dia.	OL1	in.	Ht/Slab N Thick	Grade oin. Diai
Electrode (AV	VS) <u>E 6013</u>	A5.1	IN Program E	× 7	Mfr. Prop	orietary Ctry
Process <u>SM</u>	AW	Current/	Polarity <u>CC/DC</u>	EP/Pulse	Joint Type _	Single bevel Position 3G (8")
Water Depth	33'	Dry	We	ət <u> </u>		
Welding Varia	bles:					
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
Root	1	1/8"	160 - 165	32 - 34	5.7	PPS - 150
Temper	1	1/8*	160 - 165	32 - 34	5.5	PW - 70%
Root	2	1/8"	160 - 165	32 - 34	5.6	Background - 30%
Temper	2	1/8"	160 - 165	32 - 34	5.7	42 Passes
Fill	3 - 36	1/8*	160 - 165	32 - 34	8.6	Weld time 56 min.
Сар	37 - 42	1/8"	160 - 165	32 - 34	9.2	Used Multiple Temper Bead Technique
Welder:	Darryl R.	Phillips			Welding Tea	Date: 7-1-93
				Sting	_	passes down hill
		20°	3/16.	7 <u> </u>		

Sheet 2 of 2 W/O No. ED-017-93

Tension	Tests:	(Reduced	Section/All-Weld-Metal)	N/A
---------	--------	----------	-------------------------	-----

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					l

Chemistry:

	CE	C	Mn	p	S	SI	NI	Cr	Мо	Cu	V	Cb	Nb	Ai
CTR														
LAB	.462	.20	1.50	.014	.019	.38	.03	.02	.01	.03	.01	.01		***

Hardness (Vickers/Rockwell): N/A

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)		
HAZ (MAX)		
HAZ (AVG)		
WM (MAX)		

Purpose	Ωf	Test.

Compare Charpy V-notch HAZ impact test results with notch parallel to HAZ vs AWS D3.6

orientation.

Remarks & Evaluation:

For Charpy impacts on this weldment, the notch was parallel to the HAZ. Average

results of tests on four macros were: Absorbed Energy, 29.3 ft. lbs. Shear Fracture, 70%.

Lateral Expansion, 31.7 mils.

By: C.E. GRUBBS Office Ch	Date:	7-1-93	Rev:	an na an
---------------------------	-------	--------	------	----------

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

	-93	P.O. No.	GD406178	
Company:Globa	l Divers & Cont	ractors, Ind	*	
Test:Charpy	V-Notch Impact	Test per As	STM A-370. E-23	************
Test Performed or	: $3/4$ " x 8"Lq.	Weld(Conf.	Weld) 3G-With T.B.	
	Square Groove	3		***
Size of Specimens	: <u>Full Size</u>	(10mm x 10mm	n x 55mm)	Verlannungen.
Test Temperature:	28°F			

This Certificate may not be altered, deleted from, published and/or used except in full.

R	ESULTS		
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL
	ENERGY	SHEAR	EXPANSION
	ft - 1bf	FRACTURE	(mils)
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	33	70	35
	31	70	36
	19	70	30
	30	70	27
	27	70	32

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By:	Date:	7-8-93
SRC Engineers, Inc.		
Reviewed By: Karhal desired	Date:	7. 9. 0 >
	Date:	
GLOBAL6.chp		

24 Hour Service

Main Office: Amelia, LA 70340 P.O. Box 369 Phone (504) 631-2873 FAX (504) 631-3920

Branch New Iberia L4 6019 South Lewis Phone (318) 364-9055

Branch Houma UA 3739 Grand Cas du Ad Ameria 504 Sile 3134

Operation Houston Tx Aransas Pass Tx

AS A MUTUAL PROTECTION TO CLIENTS THE PUBLICAND CLASSIVES ALL ASPORTS AND SLEW TROP AS THE CONFIDENTIAL PROPERTY OF CLIENTS AND AUTHORIZATION FOR PLBLICATION OF STATEMENTS & RESERVED PENDING DUA WRITTEN APPROVAL

RADIOGRAPHIC REPORT

CONT	RACTOR _		- A Historical		= HADIOGHA		JOB#	* 1 - 2			**************************************
J08 L	OCATION .	Doc	1	11/2-1	· //		20#/W/0≠				***************************************
	}		···· y ···				CLIENTS .	*		~~	
NELD NO.	PIPE SIZE	LOCATION	ACCEPT	PREJ.	Position	WELD NO.	s pr Size	: OCATION	5 2 x 0		REMA
77	34-33				36				4		<u> </u>
\mathcal{L}_{-}											
			 	ļ							
-	74-33			<u> </u>	16				-		
5											
			<u> </u>								
										······································	
SCI	مكنت	r filma	FION	we	LA					······································	
											······································
											······································
-+											
1		***************************************									
	<u>-</u>										
ĺ											
											
_			-								
					WILL AND ADDRESS OF THE PARTY O			···			

L											
RUDE	S TOAUC.				· · · · · · · · · · · · · · · · · · ·			····	······································		
	WORK TH	ME	· / /////			VUMBER OF	WELDS				ere en
	STAND 6	Y				LM USED AMOUN	~	SIZE		WA	
	TOTAL HO	DURS	7/1/	4		11.			<i>;</i> -	1798 ブ <i>し</i> ノン	
	PER OIEN	Λ	-~ <u>-</u> ,		•••	, ⁵	******	·////			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Я	es es		~	· · · · · · · · · · · · · · · · · · ·		Principal Control	To the desire with the control of th			
JMAR	ks	-HMININ 15		62	27 W	رر در سوا	11/2 1	130-2 16	/ - c	1.*.	, i
->				. ′			(1)	21,75	ka ma mandida waxa 1 s		
ECHN	ICAN	1 Same		· .	.~		ACCERTED		1 ms 1's		
	ICAN		and the second		A				59		
			A secondaria	*		7 15	e de m			ne-07 -	
NSIST.	ANT	e'd as Ak		1		- 17		CLIENT'S REF			******************

24 Hour Service

Main Office: Amelia, LA 70340 P.O. Box 369 Phone (504: 631: 2873 FAX (504: 631: 3920

Branch New (bena. LA 6019 South Lewis Phone (318) 364-9055 Branch Houma L4 3139 Grand Callou Ro Phone (504) 876-3134

Operation Houston TX Aransas Pass TX

AS A MUTUA, PROTECTION TO CLIENTS THE PUBLICAND NURSELLES ALL REPTAINS ARE SUBMITTED AS THE COMPROSITIAL PROPERTY OF CLIENTS AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS SPESSERVED PRIORIDING OUR WRITTEN APPROVAL

RADIOGRAPHIC REPORT

ON?	RACTOR .	ebai :	-				-08×	6.29			**************************************
) = L	T. MORTADO	SAME Entrac	$\overline{\mathcal{I}_{D}}$		ì	~~=~	PO# WHATS	0040	417	4	
····							LL'ENT'S	#			
LD 0.	,	LOCATION	ACCEPT	REJ.	Position	WELO ∿o.	5 0 F 5 2 E	LOCATION	SRAD ACCÉPT	ING REJ.	REU.
	A 537	3G DEEP	<u> </u>		36						Ì
7	KIPLATE		-	ļ	- Indiana						
			-	ļ		***************************************					<u> </u>
				 		Commence of the Commence of th			+	···	
										······	
Z	SA 557,	4G DOEP			L-G						<u> </u>
``	THE PLAT	YB DEF		-					ļ		
<u> </u>									 		
	,						***************************************		 		
	70 VIST 3-6	<i></i>									
-	3-15		!		3.=			·····			
							<u>-</u>	****	 		
									 		
	31 10 1	_			WALLS THE STREET						
2	3/11/11 A	-			2.6 H	······································					
	با حي						······································		<u> </u>		
				†							
}	-	· · · · · · · · · · · · · · · · · · ·									
-											
1	Con	ir matio	ا ا	111				***************************************			
											·····
							-				
			*								
•											
											
1											
-				$ \Box$						_	
+											
										Ţ	
- de					N		-				~~~~
OUR	RS TRAVE	h						4	L	····	
	WORK	E M E	~~~			IUMBEA O	r WELDS		·····		~~
	STAND	BY		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		AMOUA	,~	SIZE		nv pi	g** 6.
		HOURS		-	~	400-	************	= 1/0 Y/D		<u> </u>	2
		3E	************		- -	1	-				
	PER DI	0 %.*			-					**************	
	200				-	**************************************				^	
٠, ۵	aks (Sc	emn II	i	سسر 	7	HATE	. (1	1.152	= /		
			The second part of the second					Company of the second	مانيا الفاعوريية		nametern
~ <u>~ </u> *	LOAN Ær	lus m	, N-100, 1				ACCEPTE		aliani ani		
	7 3			#						1	
		4+64-			· //	-486		and the same	14 12	le ,	
	TANT	4531 Fie à			/ 1	(3 65%	· · · · · · · · · · · · · · · · · · ·		and the second	1 11.1	

24 Hour Service

Main Office: Amelia, LA 70340 P.O. Box 369 Phone (504) 631-2873 FAX (504) 631-3920

Branch: New Idena, LA 6013 South Lewis Phone (318) 384-9055

āranch Hosma (J4) 21/39 Grand Cassou Rid Phone (504) 876-81 X4

Operation Houston TX Aransas Pass TX

AS A MUTUAL PROTECTION TO CLIENTS THE RUBL AND SURSELVES ALL REPORTS DAE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS AND AUTHORIZATION FOR FUBLICATION OF STATEMENTS SIRESERVED PENDING DUR WRITTEN APPROVAL

RADIOGRAGHIC REPORT

CLIE	NI LA	SAME	- · U	دف ۲ ک	······································		aminantamientos.	DATE	6	-29	-93	······································	
JO8 1	OCATION	SAME toll of	Tb.	ific	<u> </u>			PO# <i>O</i> #O	د ت -	40	& Z Z	19	
ELD	ря р є 5: Z €	LOCATION	ACCEPT	/N 7 REJ.	Plat Poste 36	C	WELD NO.	FIFF SEZE	1004	T:ON		DING REJ.	₹ 0 4
7	5A 537	3G DEFF)		36								
2	** *******					#			***************************************		<u> </u>		
			†										
<u>ر</u> ح	4537	HG DOEP			46								
<u>,</u>	Ph'Ph1	HG DOEP											ļ
													
/2	Ki Vlot				3 4								
	3 h D A	-						······					
,2.	3/11 Plat 2-6				26								
-													
1		-			***************************************								
1	Con.	Cir matio	£1										
													
							V				***************************************		
						_							
									····	and the same of th			
	<u></u>				***************************************								
													······································
									·	_			
						-							

_						#							***************************************
1						1			***************************************				
OUI	NORK STANC	TIME BY HOURS		of Anthritism management of property of the state of the		FILM	LUSED AMOUN		Size			. Yp	
	MILEA	SE			• •		<u> </u>	·	= //8 }		*******	<i>F</i> 5	<u> </u>
ЛА	AKS (S	amont	· <u> </u>			F)! 1	176	(1					Minimal shakeling shake 19
		duc. 20/ c						400 6 PT 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				*****
SIS	TABUT	ilton Ted			to the address of the section of the	Ning	186	/ o.				11/20	opphis i i i i i i i i i i i i i i i i i i

24 Hour Service

Main Office: Amelia: LA 70340 P.O. Box 369 Phone i504i 631-2873 FAX (504i 631-3920

Branch: New Idena, LA 6019 South Lewis Phone (318) 364-9055

Branch Houma (2) 3139 Grand Call ou Rd Phone(504) 578-3194

Operation, Houston, TX, Aransas Pass, Tx

AS A MUTUAL PROTECTION TO CLIENTS THE PUBLIC AND DURSELVES ALL RESCRIPTS ARE SLEW THED AT HE CONFIDENTIAL PROPERTY OF CLIENTS AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS A RESERVED PENDING OUR WRITTEN APPROVAL

RADIOGRAPHIC REPORT

CONT	RACIOR	SAME					JOB#	6.29	7.7.		·
105 (OCATION	SAME FOIL OF	T_b	ario	```		PO# (Jan)	0540	617	9	
	·						CLIENTS			<u>.</u>	**************************************
ELD 10.	PIPE Stře	LOCATION	ACCEPT	REJ.	Post to	WELD	F + F E	: 0 C 4 7 1 0 M	S P A D ACCEPT		25.4
z.,	SA 537	30 DEFF)		36						
12	KIRATE		+-/								1
_			+~			<u> </u>			 	·	ļ
	1										
7 (CACOT	110 200	 		46						
٠	PA'DO	YB MFP						to decrease any majory to a contract the contract and a second section of the contract the contr	 		
3			1-/								
			 		······································						
	3-6							***************************************		***************************************	
2	3-6		+	***************************************	34						
											·
	3/10	<u></u>	ļ		······································	<u> </u>					
2	3/41/Part 2-G				26	 	<u> </u>				······
-								*******	-		······
	-		-								
7											
i			-								······
1	-044	i matio	الم الم								
							·····				

								-			
									-		
								-		<u> </u>	
										-	
\dashv											·
-											·
1											
1											***************************************
+											
I						***************************************					**************************************
)UI	RS TRAVE					aran yan kalan aran ya ya mana ka ka a mana kana ka a ka a ka a	······································	4	*******	<u></u>	****
	WORK	TIME		***************************************		NUMBER O	F WELDS _				
		87			No.	AMOUN	ıŦ.	SIZE		TVP.	E:
		HOURS	·		~	400%		= YaYIC	*******	£-5	
		K							,,,	***************************************	/-/
		*******************************			-		***************************************	and the second s			***************************************
,Δ	AKS CQ	imac R	n i			/; \ \	. (1)		,.,,	A	-
,,,	المستعددة	CAPIFIC I	<u></u>	<u> </u>	7-61	CLATE	<u> </u>	HUEL		·^	·
		· / :					^—	- 154 h	<u> </u>		
		ducad i		***************************************	******************		ACCEPTE:	· ·		,	
		ilton To				1-901	<i>i</i> .	and the same	1. 1	rt.	
	****	assifie d			1\1	1 × 1/2	7	tanana ta 1 1 mm	1.12	لمعد مجسر الأ	

MATERIALS JOINING WORK REPORT

Sheet _____ of __2 W/O No. ED-018-93

Part 1 Groove Weld with Multiple Temper Bead

						Gradein. Diai
lectrode (AW	S) <u>E 6013</u>	<u> </u>	TN Program I	Ex 7 Mfr	. Proprietary	Ctry
rocess	SMAW	Current/	Polarity <u>CC/D</u>	CEP/PULSE	Joint Type _\	V-GROOVE Position 3G (8")
Vater Depth _	33'	Dry	W	et X	vooruumuvvooruntee	
Velding Variat	oles:					
RF&C	PASS	DIA	AMPS	VOLTS	i.P.M.	REMARKS
Root	1	1/8"	150 - 160	3 3 - 34	8.7	PPS - 125
Temper	1	1/8"	150 - 160	3 3 - 34	8.4	PW - 50%
Root	2	1/8"	155 - 160	33 - 34	8.8	Background 30%
Temper	2	1/8"	155 - 160	33 - 34	8.2	Weld Time - 54 Min.
Fill	3 - 37	1/8"	155 - 160	33 - 34	8.4	Used MPT Welding Technique
Сар	38 - 44	1/8"	155 - 160	33 - 34	9.1	
Welder:	Darryl R.	Phillips	······································			Date: 6-18-93
Welding Join	t Sketch:				Welding Tech	nniques:
					Stringer Be	eads with all passes downhill.
	30.	3/8	3/16.]	1/8.		

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-018-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) _____N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry: A-36

	CE	C	Mn	Р	8	SI	NI	Cr	Mo	Cu	V	СЬ	Nb	Al
CTR	·													
LAB	.26	.14	.68	.011	.005	.25	.02	.02		.02	na ya ay	No real sector	~~~	.033

Hardness (Vickers/Rockwell): Vickers 10 kg, combined test results on four macros.

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	153	150
HAZ (MAX)	226	244
HAZ (AVG)	199	197
WM (MAX)	240	226

Purpose of T	est:
--------------	------

Compare properties of weldments made with and without, the multiple temper bead wet

welding technique.

Remarks & Evaluation:

Four Haz Charpy V-Notch impacts results at 28° F averaged :

Absorbed energy - 71 ft lbs, Shear Fracture - 62%, Lateral Expansion - 57 mils.

Four of four macros revealed no HAZ cracks at ≤100X.

By: <u>C.E. Grubbs</u> Date: <u>6-18-93</u> Rev:
--

Sheet 1 of 2 W/O No. ED-019-93

MATERIALS JOINING WORK REPORT Part 1 Groove Weld Without Temper Bead

Location GL	OBAL DIVERS	S - PORT OF	IBERIA	Contr	act No. 91-	M-4346
Mat'l (1)A Ht./Slab No	X 36 0274	Gra	de		Mat'l (2)	Grade
Thick5	5/8"	_ in. Dia		in.		in. Diain
			TN Program			Ctry
Process SM	IAW	Current/I	Polarity <u>CC/DC</u>	CEP/Pulse 、	koint Type	V-Groove Position 3 G
Water Depth _ Welding Varial		Dry	W	et X		
RF&C	r i	DIA.	AMPS	VOLTS	LP.M.	REMARKS
Root	1 - 2	1/8"	155 - 160	33 - 34	5.7	PPS - 125
Fill	3 - 36	1/8"	155 - 160	3 3 - 34	6.3	PW - 50%
Сар	37 - 42	1/8"	155 - 160	33 - 34	9.1	Background 30%
						Weld Time - 56 Min.
						No temper beads were used.

Welder:	Darryl R. Phillig	os				Date: 6-18-93
Welding Join	t Sketch:				Welding Te	chniques:
					Stringer Be	ads. All Passes Down Hill.
	30.	3/8	3/16.]	1/8*		

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-019-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) ____N/A

SPECIMEN	ORIENT ULTIMATE S. YIELD S.	ELONGATION	FAILURE
1			
2			

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2				**************************************	
3					
4					

Chemistry: A 36

	CE	С	Mn	Р	8	SI	NI	Cr	Мо	Cu	V	СЬ	Nb	Al
CTR												-		
LAB	.26	.14	.68	.001	.005	.25	.02	.02		.02	******			.033

Hardness (Vickers/Rockwell): Vickers 10 kg (combined test results for four macros)

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	139	151
HAZ (MAX)	220	244
HAZ (AVG)	195	196
WM (MAX)	227	227

Purpose	ΩÍ	Test.

Compare properties of weldments made with and without, the multiple temper bead wet

welding technique.

Remarks & Evaluation:

Four HAZ Charpy V-notch impact results at 28° F. averaged:

Absorbed energy 73 ft. lbs. Shear Fracture - 80%. Lateral Expansion - 70 mils.

Four of four macros revealed no cracks at ≤100 x.

By: C. E. Grubbs And help	Date:	6-18-93	Rev:	4V 40-ma
---------------------------	-------	---------	------	----------

Sheet	1	of	2	
W/O	No.	ED-02	22 -93	

MATERIALS JOINING WORK REPORT Part 1 Groove Weld with Multiple Temper Bead

Location GLOBAL DIVERS - PORT OF IBERIA Contract No. 91-M-4346

ASIM A36	Gra	ide	·····	Ht/Slab No.	Grade
1/2"	in. Dia		i n .	Thick	in. Diain
S) <u>E 6013 A5</u>	.1	TN Program	Ex 7	Mfr. Propr	cietary Ctry
SMAW	Current/Po	olarity <u>CC/DCI</u>	<u>P</u> Joint	Type <u>V-Groove</u>	Position 3G (8")
33'	Dry	We	et <u>X</u>		
les:	.				
PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
3	3/32"	105 - 110	25 - 30	5	Used MTB
2	3/32*	105 - 110	25 - 30	5	Weld Time 45 Minutes
16	1/8"	175 - 180	25 - 30	8	
6	3/32"	105 - 110	25 - 30	5	Used MTB
4	1/8"	175 - 180	25 - 30	8	Weld Time 45 Minutes
2	3/32"	110 - 120	25 - 30	6	
33					
	30.	3/16.	1/8		Date: 9-10-93 ques: Beads - All Passes Downhill
	1/2" S) <u>E 6013 A5</u> SMAW 33' les: PASS 16 6 4 2 33	1/2" in. Dia. S) E 6013 A5.1 SMAW Current/Posts: PASS DIA. 3 3/32" 2 3/32" 16 1/8" 6 3/32" 4 1/8" 2 3/32" 33 Darryl R. Phillips Sketch:	In Dia	Current/Polarity CC/DCEP Joint	Ht./Slab No. Thick SN E 6013 A5.1 TN Program Ex 7 Mfr. Propring SMAW Current/Polarity CC/DCEP Joint Type V-Groove 33' Dry Wet X

Sheet <u>2</u> of <u>2</u> W/O No. ED-022-93

Tension Tests: (Reduced Section/All-Weld-Metal) _____N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					***************************************
2					

Bends:

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1			X	3-1/3 T	SATISFACTORY
2			X	3-1/3 T	SATISFACTORY
3			X	3-1/3 T	SATISFACTORY
4			Х	3-1/3 T	SASTISFACTORY

Chemistry: ASTM A36

	CE	C	Mn	P	S	Si	Ni	Cr	Mo	Сп	V	Съ	Nb	Ai
CTR														
LAB	.4154	.24	1.01	.006	.014	.07	.02	.01	.01	.02	.002	.002	.002	.008

Hardness (Vickers/Rockwell): Vickers 10 kg (Combined results of four macros)

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	N/A	N/A
HAZ (MAX)	496	478
HAZ (AVG)	346	304
WM (MAX)	N/A	N/A

Purpose of	of T	est:
------------	------	------

Compare properties of weldments mad with and without the multiple temper bead wet welding

method.

Remarks & Evaluation: Four of four cross sections had no HAZ cracks at ≤ 100X. Four of four side bends passed 3-1/3 T.

By: C.E. Grubbs Shulk	Date:	9-10-93	Rev:	
-----------------------	-------	---------	------	--

Sheet		1	of	2
W/O	No.	EI	D- 0	23-93

MATERIALS JOINING WORK REPORT Part 1 Groove Weld With No Tempering

Mat'l (1) Ht/Slab No Thick	ASTM A36	Gra in. Dia.	de	in.	Mat1 (2) Ht./Slab No Thick	Grade in. Dia.
Electrode (AW	S) <u>E 6013</u>	TN	Program Ex 7	Mfr	Proprietary	Ctry
rocess	SMAW	Current/Pol	arity <u>CC/DCE</u>	P	Joint Type _	V-Groove Position 3G (8")
Water Depth _	33'	Dry	We	tX		
Welding Varial	oles:					
RF&C	PASS	DIA.	AMPS	VOLTS	LP.M.	REMARKS
ROOT	2	3/32"	110-120	25 - 30	5	No Tempering Weld Time 43 min.
FILL	3	3/32"	110-120	25 - 30	6	
FILL	20	1/8"	175-180	25 - 30	8	
CAP	4	1/8"	175-180	25 - 30	8	
TOTAL	29					
	_					
Welder:	Darryi R. P	'hillips				Date: 9-10-93
Welding Joint	Sketch:				Welding Technic	ques:
					Stringer Bea	ids with all passes downhill.
		F → 30·∠				
A CONTRACTOR OF THE PROPERTY O			()		
<u> </u>				7		
	or destinations			ļ		
		1	3/16- 7			
	-eleva	3/9				
		3/91				

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-023-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
Į.			Х	3-1/3 T	SATISFACTORY
2			Х	3-1/3 T	SATISFACTORY
3			X	3-1/3 T	SATISFACTORY
4			X	3-1/3 T	SATISFACTORY

Chemistry:

	CE	С	Mn	P	S	Si	Ni	Cr	Mo	Cu	v	СЪ	Nb	Al
CTR	-													
LAB	.4154	.24	1.01	.006	.014	.07	.02	.01	.01	.02	.002	.002	.002	.008

Hardness (Vickers/Rockwell): Vickers 10 kg (Combined results of four macros)

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	N/A	N/A
HAZ (MAX)	482	510
HAZ (AVG)	374	365
WM (MAX)	N/A	N/A

Purpose of Test:	Compare properties of weldments made with and without the multiple temper bead wet welding method.
Remarks & Evaluation:	Four of four cross sections had no HAZ cracks at 100X. Four of four side bends passed on 3-1/3T.

By: C.E. Grubbs	Date:	9-10-93	Rev:	
-----------------	-------	---------	------	--

Sheet	1	of	2
W/O No.	EC	020	93

MATERIALS JOINING WORK REPORT Part 1 Groove Weld With Temper Beads

Location GL	OBAL DIVER	<u>IS - PORT OF</u>	IBERIA	Cor	itract No. 91	1-M-4346
			8		Mat'i (2) Ht/Slab No Thick	Grade
Electrode (AV	VS) <u>E 6013</u>	A5.1	TN <u>Program</u>	<u>Ex 7</u>	Mfr. Propriet	tary Ctry
Process SM	IAW	Current/l	Polarity <u>CC/DC</u>	CEP/Pulse	Joint Type	V-Groove (8") Position 3 G
Water Depth						
Welding Varia	bles:					
RF&C	PASS	DIA.	AMPS	VOLTS	I.P.M.	REMARKS
Root	1 - 2	1/8"	150 - 160	28 - 30	5.6	PPS - 125
FØ	3 - 36	1/8"	150 - 160	28 - 30	6.2	PW - 50%
Cap	37 - 42	1/8*	155	30	9.1	Background 30%
Temper	Avg	1/8*	155	30	8.6	Weld Time - 55 Min.
						Used MTB Wet Welding Technique.
Welder:	Darryl R. Philli	ps				Date: <u>7-12-93</u>
Welding Joint	Sketch:				Welding Te	echniques:
					Stringer Be	eads. All Passes Down Hill.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	35.	L 1 30.				
5				_ [1/8·		
						
	revolution	3/0-	3/16			
	1	i ara				

Sheet <u>2</u> of <u>2</u> W/O No. <u>ED-020-93</u>

Tension Tests: (Reduced Section/All-Weld-Metal) ____N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3		***************************************	***************************************		
4					

Chemistry: A5 88-88A Gr. B

	CE	С	Mn	Р	S	SI	NI	Cr	Мо	Cu	V	Сь	Nb	Δŧ
CTR	.449	.13	.98	.016	.011	.377	.27	.59	~~~	.281		***		
LAB														

Hardness (Vickers/Rockwell): Vickers 10 kg (combined test results for four macros)

LOCATION	LEFT SIDE	RIGHT SIDE	
BASE METAL (AVG.)	198	197	
HAZ (MAX)	382	370	
HAZ (AVG)	298	304	
WM (MAX)	252	232	

Purpose	ΟÍ	Test:
---------	----	-------

Compare properties of weldments made on A588-88A Gr B plate with, and without, the

multiple temper bead wet welding technique.

Remarks & Evaluation:

With MTB, Charpy V-notch impact results at 28° F. averaged:

Absorbed energy -32 ft. lbs. Shear Fracture - 68% and Lateral Expansion -35 mils.

By:	C. E. Grubbs	27	P. P.	D. L.				
)			acet	Date: _	<u>7-12-93</u>	Rev:	*****	

Sheet 1 of 2 W/O No. <u>ED-021-93</u>

MATERIALS JOINING WORK REPORT Part 1 Groove Weld Without Temper Bead

		>11%		I# #4	1111	Grade oin. Diain
Electrode (AW	/S) <u>E 6013</u> /	A5.1	TN <u>Program E</u>	Ex 7	Mfr. Proprie	tary Ctry
Process <u>SM</u>	IAW	Current/F	Polarity <u>CC/DC</u>	EP/Pulse .	Joint Type	V-Groove (8") Position 3 G
	33'	Dry	W	et <u>X</u>	······································	
Welding Varia		DIA.	AMPS	VOLTS	LP.M.	REMARKS
Root	1 - 2	1/8"	150 - 160	28 - 30	5.6	PPS - 125
F a	3 - 36	1/8"	150 - 160	28 - 30	6.2	PW - 50%
Cap	37 - 42	1/8"	150 - 160	28 - 30	9.1	Background 30%
						Weld Time - 54 Min.
						Welded without temper beads.
Welder:	Darryl R. Phillip)s				Date: 7-12-93
Welding Join	t Sketch:					"echniques; Beads. All Passes Down Hill.
	30.	30.	3/16.	1/8-		

Sheet 2 of 2 W/O No. ED-021-93

Tension Tests: (Reduced Section/All-Weld-Metal) N/A

SPECIMEN	ORIENT	ULTIMATE S.	YIELD S.	ELONGATION	FAILURE
1					
2					

Bends: N/A

SPECIMEN	ROOT	FACE	SIDE	RADIUS	RESULTS
1					
2					
3					
4					

Chemistry: A5-88-88A Gr. B

II		CE	С	Mn	P	S	SI	NI	Cr	Мо	Cu	V	Cb	Nb	Al
1 C1	rr	.449	.13	.98	.016	.011	.377	.27	.59		.281	.03	~~~		
LA	/B														

Hardness (Vickers/Rockwell): Vickers 10 kg (combined test results for four macros)

LOCATION	LEFT SIDE	RIGHT SIDE
BASE METAL (AVG.)	193	190
HAZ (MAX)	360	370
HAZ (AVG)	288	301
WM (MAX)	260	228

Purpose	of	Test:
4 41644	U1	i Col.

Compare properties of weldments made on A588-88A Gr B plate with, and without, the

multiple temper bead wet welding technique.

Remarks & Evaluation:

With no MTB, Charpy V-notch impact results at 28° F. averaged:

Absorbed energy -36.3 ft. lbs. Shear Fracture - 63.3% and Lateral Expansion - 35.7 mils.

Ву:	C. E. Grubbs	155.41.	Date:	7-12-93	Rev:	
			Date.	7-12-30	Hev:	

SRC ENGINEERS, INC

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:			93	P.().]	No.		GD406139	
Compa	ny:	<u> Global</u>	Divers & Cont	tractor	s,	Inc.			
Test:	-	Charpy	V-Notch Impact	t Test	pe:	r ASI	M	A-370, E-23	
Test	Per	formed on:	Weld (With)	Temper	Be	ead			
*	_			······································					
Size	of	Specimens:	<u> Full Size</u>	<u>(10mm</u>	X	10mm	x	55mm)	
Test	Tem	perature:	28°F	······	·····				

This Certificate may not be altered, deleted from, published and/or used except in full.

R	ESULTS		
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL
	ENERGY	SHEAR	EXPANSION
	ft - lbf	FRACTURE	(mils)
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	91	50	64
	54	60	52
	74	50	54
	62	50	33
	77	85	72

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By:

Tim J. Broussard

Date: 6-22-92

SRC Engineers, Inc.

Date: 6-27-93

GLOBAL4.chp

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 (318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date: 06-22-93 P.O. No. GD406139 Company: Global Divers & Contractors, Inc.
ClidIDV V-NOTCh Impact most some
Cost Porton d
est Performed on: Weld (Without) Temper Bead
- Tombor Dead
ino of Co.
ize of Specimens: Full Size (10mm x 10mm x 55mm)
(mince x manor x manor)
look Manual
est Temperature: 28°F
This contist was

This Certificate may not be altered, deleted from, published and/or used except in full.

SPECIMEN NUMBER ABSORBED PERCISE ENERGY SHEAR ft - lbf FRACT H1(Heat Affected Zone) 69 50	AR EXPANSION
SPECIMEN NUMBER ENERGY SHEAR ft - lbf FRACT	AR EXPANSION
H1(Heat Affected Zone) 60	TURE (mils)
H2(Heat Affected Zone)	0 73 5 61 5 76

EQUIPMENT UTILIZED FOR TEST	
Type: Charpy V-Notch Impact Tester	
Manufacturer: Tinius Olsen	
Serial No.: 85900	
Last Calibration: January 18, 1993	

Certified By: Date: <u>6-22-93</u> Tim J. Broussard SRC Engineers, Inc. Reviewed By: Date: 6-22-93

GLOBAL4.CHP

APPENDIX XVI

SRC E	NGI	NEERS,	_	INC -				
837-3810,	31106	* LAPAYETTE,	LA	70593-1106	*	PAX	(318)	837-5710

COMPANY NAME: Global Divers

New Iberia, La.

TEST PERFORMED: Vickers 10kg load hardness test on weld sample

P.O. #GD406139 Underwater Weld Sample #TB-1

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg

HAZ Examined at 5X, 50X, & 100X Magnification. No HAZ Hydrogen Cracks were present.

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By:_ Date: 6-24-93

Reviewed By: Date: <u>6-24-93</u>

GLOBAL4.VIC

TEST PERFORI	New Iberia, MED: Vickers 10kg	
	P.O. #GD4061	<u>load hardness test on weld sampl</u> 39 Underwater Weld Sample #TB-2
Specification	on: In accordance	
HARDNESS	S TEST DATA:	Vickers 10kg
	225 '99	181 205 3°2.
154 154	199 240 212 230	193 226 193 / 202 214 155
	195	199 204 212 212 184 20 212
	Examined at 5X, 50 Z Hydrogen Cracks	X, & 100X Magnification. were present.
NO IM	Examined at 5%, 50 Z Hydrogen Cracks EQUIPMENT	X, & 100X Magnification. were present. UTILIZED FOR TEST
No HA	Examined at 5X, 50 Z Hydrogen Cracks	X, & 100X Magnification. were present. UTILIZED FOR TEST
No HA Type:T	Examined at 5%, 50 Z Hydrogen Cracks EQUIPMENT ukon Model LR Mic	X, & 100X Magnification. were present. UTILIZED FOR TEST

GLOBAL4.VIC

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u> Global Divers</u> New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD406139 Underwater Weld Sample #TB-3 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 217 220 212 244 / 215 139 220 212 212 Note: HAZ Examined at 5X, 50X, & 100X Magnification. No HAZ Hydrogen Cracks were present. EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Type: Manufacturer: Wilson Serial No.: ___ LR-997 Last Calibration: January 18, 1993 SRC Job No. _____92-352 Certified By: Date: 6-24-93 Reviewed By: Date: 6 - 24-93

		6 * LAFAYE	*****	a. /UDS) 2—TTO	r rA	- Χ (31	8) 837-
COMPAN	IY NAME:	Global D New Iber	ivers ia, La	*				
TEST P	ERFORMED	Vickers : P.O. #GD4	10kg 10 106139	oad ha Under	rdness water	test Weld	<u>on we</u> Sample	eld san ∋ #TB-4
Specif	ication:	In accor						
<u>HA</u>	RDNESS TE	ST DATA:		Vick	ers 10	kg		
		.34	-84	184	571	18	193 / 7	
1.7°†	:65	\ 181 \ 180	'99 '80		181 189	175 179	r	150
-			194 186 2 186	12 94		/		
Note:	HAZ Exam: No HAZ Hy	ined at 5X ydrogen Cra	, 50X, acks w	& 100 ere pr	esent.		tion.	
		EQUIPME	ITU TI	[LIZED	FOR T	EST		
Type	: Tukor							
Туре		EQUIPME Model LR Wilson	Microl					
Type Manu	facturer:	Model LR	Microl					

Certified By: Implement Date: 6-24-93

Reviewed By: Sound Oller Date: 6-24-93

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u>Global Divers</u> <u>New Iberia, La.</u> TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD406139 Underwater Weld Sample #NTB-1 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 195 224 212 209 220 192 -35 183 \ 2.4 154 99 227 199 227 227 /202 Note: HAZ Examined at 5X, 50X, & 100X Magnification. No HAZ Hydrogen Cracks were present. EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Manufacturer: Wilson Serial No.: LR-997 Last Calibration: January 18, 1993 SRC Job No. 92-352 Certified By: / nuc Date: 6-24-93 Reviewed By: Date: 6-2**4**-23 GLOBAL4.VIC

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: Global Divers New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD406139 Underwater Weld Sample #NTB-2 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg > 212 / 201 / 199 190 × 136 203 1.50 157 .55 205 199 186 €186 × < 190 HAZ Examined at 5X, 50X, & 100X Magnification. No HAZ Hydrogen Cracks were present. EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Type: _ Manufacturer: Wilson Serial No.: LR-997

Last Calibration: January 18, 1993

SRC Job No. 92-352

Certified By:_

Date: 6-24-93

Reviewed By: Date: 6-24-53

GLOBAL4.VIC

SRC ENGINEERS, INC 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: Global Divers New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample P.O. #GD406139 Underwater Weld Sample #NTB-3 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 220 212 208 179 114 * 33 205 *84\ 212 202 /212 Note: HAZ Examined at 5X, 50X, & 100X Magnification. No HAZ Hydrogen Cracks were present. EQUIPMENT UTILIZED FOR TEST Tukon Model LR Microhardness Tester Type: Manufacturer: __ Wilson Serial No.: ___ LR-997 Last Calibration: January 18, 1993 SRC Job No. 92-352

Date: 6-24-93

Date: 6-24-93

GLOBAL4.VIC

Certified By:

Reviewed By:

	837-3810 31104	
	3010, 31100	INEERS, INC. 6 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
Phys.		, , , , , , , , , , , , , , , , , , , ,
	COMPANY NAME:	Global Divers
		New Iberia, La.
	TEST PERPORMED:	Vickers 10kg load bank
	· · · · · · · · · · · · · · · · · · ·	Vickers 10kg load hardness test on weld sample P.O. #GD406139 Underwater Weld Sample #NTB-4
	Specification.	Table 1 West Sample #NTB-4
		In accordance with AWS D3.6
	UNDAMAG	
	HARDNESS TES	ST DATA: Vickers 10kg
1	1	196 187 187 162
10 10 10 10 10 10 10 10 10 10 10 10 10 1		168
*		175 × 202
-	128 137	79 202 185 179 150 150
`		
į		210 199 187 212 212 181
***************************************		184
	Note: HAZ Exami	
	no mas ny(ned at 5%, 50%, & 100% Magnification. drogen Cracks were present.
	NO IRA IIYO	Jacobs were present.
		EQUIPMENT UTILIZED FOR TEST
	Type: Tukon	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester
		EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester
	Type: Tukon	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson
	Type: Tukon Manufacturer: Serial No.:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997
	Type: Tukon Manufacturer: Serial No.:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson
	Type: Tukon Manufacturer: Serial No.: Last Calibrati	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993
	Type: Tukon Manufacturer: Serial No.:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993
	Type: Tukon Manufacturer: Serial No.: Last Calibrati SRC Job No.	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993
	Type: Tukon Manufacturer: Serial No.: Last Calibrati	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 on: January 18, 1993
	Type: Tukon Manufacturer: Serial No.: Last Calibrati SRC Job No. Certified By:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993
	Type: Tukon Manufacturer: Serial No.: Last Calibrati SRC Job No.	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993 92-352 Date: 6-24-93
	Type: Tukon Manufacturer: Serial No.: Last Calibrati SRC Job No. Certified By:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993 92-352 Date: 6-24-93
	Type: Tukon Manufacturer: Serial No.: Last Calibrati SRC Job No. Certified By:	EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson LR-997 Lon: January 18, 1993 92-352 Date: 6-24-93

APPENDIX XVII

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:07	<u>'-14-93</u>	P.O. No	GD406294
Company: <u>Gl</u>	obal Divers & Contra	ctors. Inc.	
rest: <u> </u>	rpy V-Notch Impact T	est per ASTM	A-370, F-23
rest Performed	lon: <u>5/8" x 8"Lg. N</u>	TB weld on A	588 - 3G
	_Remake		
Size of Specim	ens: <u>Full Size (1</u>	.0mm x 10mm x	55mm)
***	_		
lest Temperatu	re: <u>28°F</u>		

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS							
SPECIMEN NUMBER	ABSORBED	PERCENT	LATERAL				
	ENERGY	SHEAR	EXPANSION				
	ft - lbf	FRACTURE	(mils)				
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	26	70	28				
	34	60	41				
	34	85	32				
	27	60	33				
	34	70	35				

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: 85900
Last Calibration: January 18, 1993

Certified By: /www.Broussard	Date:	7-15-93
Tim J. Broussard SRC Engineers, Inc.		
Reviewed By: School 3	Date:	7-15-93

SRC ENGINEERS, INC.
P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF ANALYSIS

Date:0	7-14-93	P.O. N	loGD4(16201
Company:G	lobal Divers & Contr	actors.	Inc.	70234
rest:Ch	arpy V-Notch Impact	Test ner	100 A MIDS A	F_23
Test Performe	d on: $5/8$ " x 8 "Lq.	No MTB w	eld on A588	- 3G
	<u> Remake</u>			
Size of Speci	mens: <u>Full Size (</u>	10mm x 1	0mm x 55mm)	
Test Temperat				

This Certificate may not be altered, deleted from, published and/or used except in full.

RESULTS						
SPECIMEN NUMBER	ABSORBED ENERGY ft - lbf	PERCENT SHEAR FRACTURE	LATERAL EXPANSION (mils)			
H1(Heat Affected Zone) H2(Heat Affected Zone) H3(Heat Affected Zone) H4(Heat Affected Zone) H5(Heat Affected Zone)	42 47 37 22 30	70 70 60 60	38 36 37 29 32			

EQUIPMENT UTILIZED FOR TEST
Type: Charpy V-Notch Impact Tester
Manufacturer: Tinius Olsen
Serial No.: <u>85900</u>
Last Calibration: January 18, 1993

Certified By:	Tim J. Broussard	Date:	7-15-93
Reviewed By: _GLOBAL7.chp	SRC Engineers, Inc.	Date:	7-15-93

COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Vickers 10kg load hardness test on weld samm
	5/8" X 8"Lq. Remake of MTB weld on A588 pla 3G-#1
Specification:	In accordance with AWS D3.6
	TOO THE WILLIAMS US. 6
HARDNESS TES	ST DATA: Vickers 10kg
	j
352	212 202 217 627
	21/ / 29/
\ 362	/ 137 /
	282 502 206 206
\ \	282 202 206 206 282 202 206 294 282 266
	282 202 206 206 282 202 206 294 282 196 212
\ \ \ !	282 192 206 206 282 202 206 294 282 266 138
	282 202 206 206 282 202 206 294 282 266 138 1
	282 202 206 206 282 202 206 294 282 266 138 1
	282 202 206 294 282 266 138 1 272 218 199 301 262 287
75 199	282 202 206 294 266 138 1 272 218 199 301 262 287 EQUIPMENT UTILIZED FOR TEST
Type: Tukon	282 202 206 294 266 138 1 272 218 199 301 262 287 EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester
Type: Tukon Manufacturer:	282 202 206 294 266 138 1 196 212 218 199 301 262 287 EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson
Type: Tukon Manufacturer: Serial No.:	282 202 206 294 266 138 1 196 212 272 218 199 301 262 287 EQUIPMENT UTILIZED FOR TEST Model LR Microhardness Tester Wilson

Date: 7-15-93

GLOBAL7.VIC

Reviewed By:

	ickova 10h- 1
	ickers 10kg load hardness test on weld sample 5/8" X 8"Lg. Remake of MTB weld on A588 plate 3G-#2
Specification:	In accordance with AWS D3.6
HARDNESS TEST	DATA: Vickers 10kg
\ 332 \ 330	212 195 212 340 294 .
182 181	282 227 199 274 272 224 274 274 252 224 272 255 229 227 314 255 229 227 314 270
	EOUIPMENT HTTLIZED FOR TECT
	EQUIPMENT UTILIZED FOR TEST
	odel LR Microhardness Tester
Type: <u>Tukon Mo</u>	odel LR Microhardness Tester Wilson

COMPANY NAME:	Global Dive New Iberia,	
TEST PERFORMED:	Vickers 10k 5/8" X 8"L 3G-#3	g load hardness test on weld sam g. Remake of MTB weld on A588 pl
Specification:	<u>In accorda</u>	nce with AWS D3.6
HARDNESS TES	T DATA:	Vickers 10kg
370 \ 350 :98 212		
	265 265	200 212 201 215 273 294
	EQUIPMENT	UTILIZED FOR TEST
Type: Tukon		
Type: Tukon Manufacturer:	Model LR Mi	UTILIZED FOR TEST
it and the second secon	Model LR Mic	
Manufacturer: Serial No.:	Model LR Mic Wilson LR-997	crohardness Tester
Manufacturer: Serial No.: Last Calibrati	Model LR Mic Wilson LR-997 on: Januar	crohardness Tester
Manufacturer: Serial No.:	Model LR Mic Wilson LR-997 on: Januar	crohardness Tester

837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318)	837
COMPANY NAME:	Global Divers New Iberia, La.	
TEST PERFORMED:	Vickers 10kg load hardness test on weld 5/8" X 8"Lg. Remake of MTB weld on A58 3G-#4	i san 38 pl
Specification:	In accordance with AWS D3.6	
HARDNESS TES	Vickers 10kg	
36 \ 34	X X X	7
186 205	203 196 268 160 276 212 276 212 276 217 212 263 266 286	212
	250	
	EQUIPMENT UTILIZED FOR TEST	
	Model LR Microhardness Tester	
Manufacturer: Serial No.:		
	on: January 18, 1993	
ertified By:		
		3

GLOBAL7.VIC

New Iberia, La.
HARDNESS TEST DATA: Vickers 10kg 332 168 217 196 359 359 359 192 183 272 256 182 272 196 294
332 168 217 196 359 326 86 192 183 272 212 186 272 192 183 272 212 196 294
326 186 272 256 182 192 183 272 212 196 294
326 186 272 256 182 192 183 272 212 196 294
192 183 272 212 182 272 272 212 196 294
279 260 217 272 253 278
EQUIPMENT UTILIZED FOR TEST Type:Tukon Model LR Microbardness Tostor
Manufacturer: Wilson
Serial No.: LR-997 Last Calibration: January 18, 1993

Date: _

GLOBAL7.VIC

	937 3010 33106				
	837-3810, 31106	* LAPAYETTE,	LA 70593-1106 ⁴	FAX (318) 837	-5710
	COMPANY NAME:	Clabal at			
	COMPANI NAME:	Global Diver New Iberia,	<u> </u>		
	mpem papasa				***************************************
	TEST PERFORMED:	Vickers 10kg	load hardness t	est on weld sar	<u>mple</u>
		3G-#2	Remake of No M	TB weld on A588	<u> pla</u>
	Specification:	In accordance	e with AWS D3.6		
	HARDNESS TES	ST DATA:	Vickers 10kg		
	\ 360	188	192 193	332	·····
	√350		‡84	302	
		299 \ 212	212 2	278	
	196 212	203	212	178	
				. 190	: Q/
		294	35 212	/ 190 · / / / / / / / / / / / / / / / / / /	19(
ministra and a second s			35 212	190	;9(
tte find o'n men in met dag dagsage.		294	35 212 35 212 262	190	; 9 (
		294	35 212 35 212 262	190	; 9(
	,	294	35 212 35 212 262	190	19(
		294 263	35 212 35 212 262 248		190
	Type: Tukon	294 263 EQUIPMENT	35 212 35 212 262 248 TILIZED FOR TES	T	190
		EQUIPMENT (35 212 35 212 262 248	T	19(
	Manufacturer:	EQUIPMENT (Model LR Micr Wilson	35 212 35 212 262 248 TILIZED FOR TES	T	:9(
		EQUIPMENT (Model LR Micr Wilson	35 212 35 212 262 248 TILIZED FOR TES	T	190
	Manufacturer: Serial No.:	EQUIPMENT (Model LR Micr Wilson LR-997	35 212 35 212 262 248 TILIZED FOR TEST	T	9(
	Manufacturer: Serial No.: Last Calibrati	EQUIPMENT (Model LR Micro Wilson LR-997 on: January	35 212 35 212 262 248 TILIZED FOR TEST	T	90
	Manufacturer: Serial No.: Last Calibrati	EQUIPMENT (Model LR Micro Wilson LR-997 on: January	35 212 35 212 262 248 TILIZED FOR TEST	T	
	Manufacturer: Serial No.:	EQUIPMENT (Model LR Micro Wilson LR-997 on: January	35 212 35 212 262 248 TILIZED FOR TEST	T	
	Manufacturer: Serial No.: Last Calibrati	EQUIPMENT (Model LR Micro Wilson LR-997 on: January 92-352	35 212 262 248 TILIZED FOR TEST Ohardness Teste:	r	
	Manufacturer: Serial No.: Last Calibrati SRC Job No.	EQUIPMENT (Model LR Micro Wilson LR-997 on: January 92-352	35 212 262 248 TILIZED FOR TEST Ohardness Teste:	T	
C	Manufacturer: Serial No.: Last Calibrati SRC Job No. Certified By:	EQUIPMENT (Model LR Micro Wilson LR-997 on: January 92-352	35 212 262 248 TILIZED FOR TEST Ohardness Teste:	r	
C	Manufacturer: Serial No.: Last Calibrati SRC Job No.	EQUIPMENT (Model LR Micro Wilson LR-997 on: January 92-352	TILIZED FOR TEST chardness Teste: 18, 1993	r	

ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710 COMPANY NAME: <u>Global Divers</u> New Iberia, La. TEST PERFORMED: Vickers 10kg load hardness test on weld sample 5/8" X 8"Lq. Remake of No MTB weld on A588 plate 3G-#3 Specification: In accordance with AWS D3.6 HARDNESS TEST DATA: Vickers 10kg 161 320 175 173 256 186 :96 305 196 196 188 194 346 305 196 190 212 192 275 280 283 EQUIPMENT UTILIZED FOR TEST Type: _ Tukon Model LR Microhardness Tester Manufacturer: Wilson Serial No.: _ LR-997 Last Calibration: January 18, 1993 SRC Job No. 92-352 Certified By:_ Date: 7/5-93

Date: 7-15-93

GLOBAL7.VIC

Reviewed By:

	SRC ENGINEERS, INC. 837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
()	COMPANY NAME: Global Divers New Iberia, La.
	TEST PERFORMED: Vickers 10kg load hardness test on weld sample 5/8" X 8"Lg. Remake of No MTB weld on A588 plate 3G-#4
	Specification: In accordance with AWS D3.6
	HARDNESS TEST DATA: Vickers 10kg
:	259 199 176 183 340 273 340
	192 180 262 192 178 290 192 205 275

245 227 301

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Tı</u>	ikon Model LR Microhardness Tester
	er: Wilson
Serial No.	: LR-997
Last Calib	ration: January 18, 1993

205 250 263

SRC Job No.	92-352		
Certified By:	Jan Bul	Date:	<u> </u>
Reviewed By:	Paral de	Date:	7-15-93

GLOBAL7.VIC

APPENDIX XIX

SRC ENG.	LNEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet TB Groove Weld
	P.O. #GD406809
	1/2" A36(CE.4156) #1
Specification:	In accordance with AWS D3.6

MACRO TEST RESULTS:

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer:	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: Im fruit Date: 9-16 93

Reviewed By: Stopp 2000 Date: 09-10-93

SKC BNG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet TB Groove Weld P.O. #GD406809
	1/2" A36(CE.4156) #2
	-1.2 1130 (CD : 11 JU 72
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: Metallo	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: Im Jan Date: 9-16-93

Reviewed By: Soph A Colleg Date: 09-10-13

SKC ENG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet TB Groove Weld
	P.O. #GD406809
	1/2" A36(CE.4156) #3
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

EQUIPMENT	UTILIZED	FOR	TEST
graph			
Olympus			
502796			
Decemb	er, 1992		
	graph Olympus 502796	graph Olympus	Olympus 502796

SRC Job No. 92-352

Certified By: Time Processed Date: 9-16-93

Reviewed By: Date: 09-16-23

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet TB Groove Weld P.O. #GD406809
	1/2" A36(CE.4156) #4
	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallo</u>	graph			
Manufacturer: _	Olympus			
Serial No.:	502796			
Last Servicing:	Decemb	er, 1992		

SRC Job No. 92-352

Certified By: Time Frank Date: 9-16-93

Reviewed By: 50-ph 1000 Date: 09-16-93

GLOBAL 10. MAC

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers New Iberia, La.
***	Macro Etch on Wet No TB Groove Weld P.O. #GD406809 1/2" A36(CE.4156) #1
	In accordance with AWS D3.6
	MACRO TEST RESULTS:

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT	UTILIZED	FOR	TEST
Type: <u>Metallog</u>	raph			
Manufacturer:	Olympus			
			·····	
Serial No.:	<u>502796</u>			
Last Servicing:	Decemb	<u>er, 1992</u>		
			~~~~~~	

SRC Job No. 92-352

Certified By: The Annual Date: 9-16 93

SRC ENG	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet No TB Groove Weld
	P.O. #GD406809
	1/2" A36(CE.4156) #2
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

	EQUIPMENT UTILIZED FOR TEST
Type: <u>Metallo</u>	raph
Manufacturer: _	Olympus
Serial No.:	502796
Last Servicing:	December, 1992

SRC Job No	92-352		
Certified By:	Tim former	Date:	<u> </u>
Reviewed By:	CLOBAL11.MAC	Date: _	C9-10-93

	INEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
	New Iberia, La.
TEST PERFORMED:	Macro Etch on Wet No TB Groove Weld
_	P.O. #GD406809
	1/2" A36(CE.4156) #3
Specification:	In accordance with AWS D3.6

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992

Date: 09-10-93

SRC Job No. 92-352

Certified By: Tim fine Date: 9-16 93

GLOBAL11.MAC

Reviewed By:

ENGINEERS, INC.	
837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-57	1(
COMPANY NAME: Global Divers	
New Iberia, La.	
TEST PERFORMED: Macro Etch on Wet No TB Groove Weld	
P.O. #GD406809	
1/2" A36(CE.4156) #4	
Specification: In accordance with AWS D3.6	

HAZ Examined at 100% Magnification.

There was no evidence of any cracking.

EQUIPMENT UTILIZED FOR TEST
Type: Metallograph
Manufacturer: Olympus
Serial No.: 502796
Last Servicing: December, 1992

SRC Job No. 92-352

Certified By: 1m Burn Date: 9-16-95

Reviewed By: Samuel 1016 Date: 09-16-23

#### APPENDIX XX

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

CERTIFICATE OF AND	ALYSIS
Date: 9-16-93 P.O. No.	GD406809
Company: Global Divers & Contractors, Inc.	
Test:AWS D3.6-93 Side Bend Tests	
Test Performed on: 1/2" A36(CE.4156) TB (	Proove Wald
Welders Name: Darryl Phillips	320040 110110
This Certificate may not be altered, deleted from, published and	or used except in full.
SIDE BEND TEST	
SAMPLE TYPE & NUMBER	RESULTS
Side Bend S1 (6T,4T,3 1/3T)	Failed @ 2T
Side Bend S2 (6T,4T,3 1/3T)	Failed @ 2T
Side Bend S3 (6T,4T,3 1/3T)	Failed @ 2T
Side Bend S4 (6T,4T,3 1/3T)	Failed @ 2T
EQUIPMENT UTILIZED FOR TES	T
Type:Guided Bend Tester	
Manufacturer: CRC	
	te: <u>9-76-93</u>
Tim J. Broussard SRC Engineers, Inc.	
Reviewed By: 55 pto 2 (1) Da	te: <u>05-76-7</u> 2

SRC ENGINEERS, INC.

P.O. BOX 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
(318) 837-3810, 837-3819 STEPHEN R. CALLEGARI, P.E.

# CERTIFICATE OF ANALYSIS

Date: 9-16-93 P.O. No	ate: 9-16-93 P.O. No. GD406809			
Company: Global Divers & Contractors, Inc				
Test: AWS D3.6-93 Side Bend Tests				
Test Performed on: 1/2" A36(CE.4156) No Th	B Groove Weld			
Welders Name: Darryl Phillips				
This Certificate may not be altered, deleted from, published	and/or used except in full.			
SIDE BEND TEST				
SAMPLE TYPE & NUMBER	RESULTS			
Side Bend S1 (6T,4T,3 1/3T)	Failed @ 2T			
Side Bend S2 (6T,4T,3 1/3T)	Failed @ 2T			
Side Bend S3 (6T,4T,3 1/3T)	Failed @ 2T			
Side Bend S4 (6T,4T,3 1/3T)	Failed @ 2T			
EQUIPMENT UTILIZED FOR T	EST			
Type: <u>Guided Bend Tester</u>				
Manufacturer: CRC				
rim J. Broussard	Pate: 9-16-95			
SRC Engineers, Inc.				
Reviewed By: Sopher Chila	ate: <u>08-16-23</u>			
GLOBAL11.MAC				

#### Appendix XXI

SRC ENGI	NEERS, INC.
837-3810, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710
COMPANY NAME:	Global Divers
- Name	New Iberia, La.
TEST PERFORMED:	Vickers hardness test on Wet TB Groove Weld
	1/2" A36(CE.4156) #1 P.O. #GD406809
Specification:	In accordance with AWS D3.6
HARDNESS TES	T DATA: Vickers 10kg

478 478 262 236 268 268

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration:January 18, 1993

SRC Job No. 92-352

Certified By: /m /

Date: <u>9-/7-93</u>

GLOBAL10.VIC

-
<del></del>



EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC Job N	92-352		
Certified	By: Im Brend	Date:_	<u>9-/7-93</u>

GLOBAL10.VIC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Wet TB Groove Weld

1/2" A36(CE.4156) #3

P.O. #GD406809

Specification: In accordance with AWS D3.6

Vickers 10kg

496 311 239 257 235 252

EQUIPMENT UTILIZED FOR TEST
Type: Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC .	Job	No.	9	2-352	 ***********	
Cert	ifie	ed B	y:_/m	A.	Date:	9-17-95

GLOBAL10.VIC

HARDNESS TEST DATA:

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Wet TB Groove Weld

1/2" A36(CE.4156) #4

P.O. #GD406809

HARDNESS TEST DATA:

Specification: In accordance with AWS D3.6

Vickers 10kg



EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: <u>January 18, 1993</u>

SRC Job No. 92-352

Certified By: /m/derec Date: 9-17-93

GLOBAL 10.VIC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Wet No TB Groove Weld

1/2" A36(CE.4156) #1
P.O. #GD406809

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg



EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

DAC JOD M	92-352		
Certified			and the second second
cerritted	By: 1 m for	Date:	9-77-93

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Wet No TB Groove Weld
1/2" A36(CE.4156) #2
P.O. #GD406809

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA:

Vickers 10kg



EQUIPMENT UTILIZED FOR TEST
Type:Tukon Model LR Microhardness Tester
Manufacturer: Wilson
Serial No.: LR-997
Last Calibration: January 18, 1993

SRC	Job	No.	92-352	******	
Cert	ifie	ed B	y: Tom Becan	Date:	9-17-93

SRC ENG	INEERS, INC.	
837-38IO, 31106	* LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710	_
	· ,	
COMPANY NAME:	Global Divers	
	New Iberia, La.	
TEST PERFORMED:	Vickers hardness test on Wet No TB Groove Weld	
	1/2" A36(CE.4156) #3	
	P.O. #GD406809	
Specification:	In accordance with AWS D3.6	
HARDNESS TES	ST DATA: Vickers 10kg	
	TOVETP TOVA	

482 435 235 212 138 222

EQUIPMENT UTILIZED FOR TEST						
Type: _ Tukon Model LR Microhardness Tester						
Manufacturer: Wilson						
Serial No.: LR-997						
Last Calibration: January 18, 1993						

SRC Job No. 92-352

Certified By: Tim Percent Date: 9-17-93

GLOBAL10.VIC

SRC ENGINEERS, INC.

837-3810, 31106 * LAFAYETTE, LA 70593-1106 * FAX (318) 837-5710

COMPANY NAME: Global Divers
New Iberia, La.

TEST PERFORMED: Vickers hardness test on Wet No TB Groove Weld
1/2" A36(CE.4156) #4
P.O. #GD406809

Specification: In accordance with AWS D3.6

HARDNESS TEST DATA: Vickers 10kg

396 347 175 202 235 235

EQUIPMENT UTILIZED FOR TEST						
Z = GIIIIIDD ION IESI						
Type: _ Tukon Model LR Microhardness Tester						
Manufacturer: Wilson						
Serial No.:LR-997						
Last Calibration: January 18, 1993						

SRC Job No. 92-352

Certified By: 1m from Date: 9-17-93

GLOBAL10.VIC

#### Appendix XXII

#### SCIENTIFIC TESTING LABORATORIES , INC.

one 504/356-2759

2703 Weller Avenue Baton Rouge, Louisiana 70805 Fax 504/358-0648

CHARPY IMPACT TEST

[Using a Vee type notch]

Specimen ID	Individual Size	Notch Location	Test Temp('F)	Energy (FT-LBS)	Percent Shear	Mils Exp.
A1	10mm x 10mm	WELD METAL	+60	31	100	30
A2	10mm x 10mm	WELD METAL	+60	29	100	32
B1	10mm x 10mm	WELD METAL	+40	30	100	30
B2	10mm x 10mm	WELD METAL	+40	30	100	31
C1	10mm x 10mm	WELD METAL	+28	29	100	29
C2	10mm x 10mm	WELD METAL	+28	29	100	28
C3	10mm x 10mm	WELD METAL	+10	28	95	28
D1	10mm x 10mm	WELD METAL	0	25	90	24
D2	10mm x 10mm	WELD METAL	0	30	90	35
D3	10mm x 10mm	WELD METAL	0	29 1/2	90	30
E3	10mm x 10mm	WELD METAL	-10	23	90	26
F3	10mm x 10mm	WELD METAL	-10	17 1/2	80	19
G3	10mm x 10mm	WELD METAL	-10	16 1/2	70	20
E1	10mm x 10mm	WELD METAL	-20	18	60	17
2	10mm x 10mm	WELD METAL	-20	18	60	15
3	10mm x 10mm	WELD METAL	-25	13	30	14
F1	10mm x 10mm	WELD METAL	-30	13	30	10
F2	10mm x 10mm	WELD METAL	-30	14	30	10
A3	10mm x 10mm	WELD METAL	-35	15	10	14
G1	10mm x 10mm	WELD METAL	-40	13	20	12
G2	10mm x 10mm	WELD METAL	-40	16	20	13
	- material designation of the control of the contro				ļ	Į
Separation of the separation o						
	**************************************					

Notes: T=3/4" PLATE WELDED WITH AN EX7 ELECTRODE AT -33 FT. JOB#91-M-4346

Test No.: 15137 Welded by: Test Date: 11/04/93 SSN:

Conducted by: STL NB ML DD

Per: ASTM E 23

Approved by

We certify that the statements in this record are correct. were prepared, welded, and tested in accordance with the require

AWS D3.6

Organization: GLOBAL DIVERS

Date: November 8, 1993

# SCIENTIFIC TESTING LABORATORIES, INC. 2703 Weller Avenue Baton Rouge, Louisiana 70805

## CHARPY IMPACT TEST (METRIC)

Specimen ID	Individual Size	Notch Location	Test Temp (°C)	Energy (Jules)	Percent Shear	MM Exp.
<u>A1</u>	10mm x 10mm	WELD METAL	15.5	42.0	100	0.76
A2	10mm x 10mm	WELD METAL	15.5	39.3	100	0.81
B1	10mm x 10mm	WELD METAL	4.4	40.7	100	0.76
B2	10mm x 10mm	WELD METAL	4.4	40.7	100	0.79
C1	10mm x 10mm	WELD METAL	-2.2	39.3	100	0.74
C2	10mm x 10mm	WELD METAL	-2.2	39.3	100	0.71
C3	10mm x 10mm	WELD METAL	-12.2	38.0	95	0.71
D1	10mm x 10mm	WELD METAL	-17.8	33.9	90	0.61
D2	10mm x 10mm	WELD METAL	-17.8	40.7	90	0.89
D3	10mm x 10mm	WELD METAL	-17.8	40.0	90	0.76
E3	10mm x 10mm	WELD METAL	-23.3	31.2	90	0.66
F3	10mm x 10mm	WELD METAL	-23.3	23.7	80	0.48
G3	10mm x 10mm	WELD METAL	-23.3	22.4	70	0.51
E1	10mm x 10mm	WELD METAL	-28.9	24.4	60	0.43
E2	10mm x 10mm	WELD METAL	-28.9	24.4	60	0.38
В3	10mm x 10mm	WELD METAL	-31.7	17.6	30	0.36
F1	10mm × 10mm	WELD METAL	-34.4	17.6	30	0.25
F2	10mm x 10mm	WELD METAL	-34.4	19.0	30	0.25
A3	10mm x 10mm	WELD METAL	-37.2	20.3	10	0.36
G1	10mm x 10mm	WELD METAL	-40.0	17.6	20	0.30
G2	10mm x 10mm	WELD METAL	-40.0	21.7	20	0.33

NOTES: 3/4" PLATE WET WELDED WITH EX7 ELECTRODE AT -33 FT. JOB# 91-M-4346 V TYPE NOTCH WAS USED FOR TESTING

Test No.:

15137

Welded by:

Darryl R. Phillips

Test Date:

11/04/93

SS#:

262-19-9555

Conducted by:

STL NB ML DD

Per:

ASTM E 23

We certify that the statements in this record are correct. The weldments were prepared, welded, and tested in accordance with the requirements of AWS D3.6.

-ganization:

GLOBAL DIVERS & CONTRACTORS, INC.

Date:

November 8, 1993

Metric Conversion By:

C F Crubba